GfsRefine
From Gerris
GfsRefine is used to define the number of initial refinement levels.
The syntax in parameter files is as follows:
GfsRefine [ GfsFunction ]
Examples
- B\'enard--von K\'arm\'an Vortex Street for flow around a cylinder at Re=160
- Vortex street around a "heated" cylinder
- Rayleigh-Taylor instability
- Coalescence of a pair of Gaussian vortices (Gerris logo)
- Collapse of a column of grains
- Turbulent air flow around RV Tangaroa
- Savart--Plateau--Rayleigh instability of a water column
- Atomisation of a pulsed liquid jet
- Forced isotropic turbulence in a triply-periodic box
- Lunar tides in Cook Strait, New Zealand
- Small amplitude solitary wave interacting with a parabolic hump
- Shock reflection by a circular cylinder
- Tsunami runup onto a complex three-dimensional beach
- The 2004 Indian Ocean tsunami
- "Garden sprinkler effect" in wave model
- Cyclone-generated wave field
- Convergence of the Poisson solver
- Convergence with a refined circle
- Dirichlet boundary condition
- Convergence of the Poisson solver with solid boundaries
- Star-shaped solid boundary with refinement
- Star-shaped solid boundary
- Thin wall at box boundary
- Poisson solution in a dumbbell-shaped domain
- Convergence of the Godunov advection scheme
- Time-reversed VOF advection in a shear flow
- Time-reversed advection of a VOF concentration
- Time-reversed advection with curvature-based refinement
- Rotation of a straight interface
- Comparison between the explicit and implicit diffusion schemes
- Comparison between explicit and implicit diffusion schemes on concentration tracer
- Conservation of diffusive tracer
- Estimation of the numerical viscosity
- Estimation of the numerical viscosity with refined box
- Numerical viscosity for the skew-symmetric scheme
- Numerical viscosity for the skew-symmetric scheme with refined box
- Numerical viscosity for vorticity/streamfunction formulation
- Convergence for a simple periodic problem
- Convergence for the three-way vortex merging problem
- Flow created by a cylindrical volume source
- Potential flow around a sphere
- Viscous flow past a sphere
- Mass conservation
- Mass conservation with solid boundary
- Boundary layer on a rotating disk
- Lid-driven cavity at Re=1000
- Lid-driven cavity at Re=1000 (explicit scheme)
- Lid-driven cavity with a non-uniform metric
- Lid-driven cavity on an anisotropic mesh
- Poiseuille flow
- Bagnold flow of a granular material
- Poiseuille flow with metric
- Creeping Couette flow of Generalised Newtonian fluids
- Momentum conservation for large density ratios
- Hydrostatic balance with solid boundaries and viscosity
- Hydrostatic balance with quadratic pressure profile
- Coriolis formulation in 3-D
- Wind-driven lake
- Multi-layer Saint-Venant solver
- Wind-driven stratified lake
- Convergence of a potential flow solution
- Flow through a divergent channel
- Potential flow around a thin plate
- Translation of an hexagon in a uniform flow
- B\'enard--von K\'arm\'an vortex street behind a cylinder translating in a fluid at rest
- Circular droplet in equilibrium
- Axisymmetric spherical droplet in equilibrium
- Planar capillary waves
- Air-Water capillary wave
- Fluids of different densities
- Pure gravity wave
- Shape oscillation of an inviscid droplet
- Height-Function on parallel subdomains
- Scalings for Plateau--Rayleigh pinchoff
- Sessile drop
- Geostrophic adjustment
- Geostrophic adjustment on a beta-plane
- Geostrophic adjustment with Saint-Venant
- Non-linear geostrophic adjustment
- Coastally-trapped waves
- Coastally-trapped waves with adaptive refinement
- Gravity waves in a realistic ocean basin
- Parabolic container with embedded solid
- Transcritical flow over a bump
- Transcritical flow with multiple layers
- Lake-at-rest balance in an inclined domain with cut cells
- Lake-at-rest balance in an inclined domain with bipolar metric
- Circular dam break on a sphere
- Circular dam break on a rotating sphere
- Circular dam break on a ``cubed sphere''
- Advection of a cosine bell around the sphere
- Poisson problem with a pure spherical harmonics solution
- Spherical harmonics with longitude-latitude coordinates
- Poisson equation on a sphere with Gaussian forcing
- Gaussian forcing using longitude-latitude coordinates
- Creeping Couette flow between cylinders
- Creeping Couette flow between eccentric cylinders
- Flow between eccentric cylinders using bipolar coordinates
- Flow between eccentric cylinders on a stretched grid
- Rossby--Haurwitz wave
- Rossby--Haurwitz wave with a free surface
- Rossby--Haurwitz wave with Saint-Venant
- Dielectric-dieletric planar balance
- Balance with solid boundaries
- Relaxation of a charge bump
- Simple example of groundwater flow following Darcy's law
- Groundwater flow with piecewise constant permeability
Refine 6
Refine 6
Refine 7
Refine 6
Refine 6
Refine 5
Refine 5
Refine (x < -0.5 + length && R2(y,z) < 2.*radius*radius ? level : 5)
Refine 4
Refine 6
Refine 8
Refine 9
Refine 6
Refine 5
Refine 6
Refine 4
Refine LEVEL
Refine (x*x + y*y <= 0.25*0.25 ? LEVEL + 2 : LEVEL)
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine 3
Refine LEVEL
Refine 8
Refine LEVEL
Refine 8
Refine 3
Refine 5
Refine 5
Refine 3
Refine LEVEL
Refine (x > 0.25 || x < -0.25 || y > 0.25 || y < -0.25 ? LEVEL : LEVEL + 1)
Refine LEVEL
Refine (x > 0.25 || x < -0.25 || y > 0.25 || y < -0.25 ? LEVEL-1 : LEVEL + 1)
Refine LEVEL
Refine (x < -0.25 || x > 0.25 || y < -0.25 || y > 0.25 ? LEVEL : LEVEL + BOX)
Refine {
double r = sqrt(x*x + y*y);
switch (LEVEL) {
case 6: return r > 0.25 ? 4 : r > 0.15 ? 5 : 6;
case 7: return r > 0.25 ? 4 : r > 0.2 ? 5 : r > 0.15 ? 6 : 7;
case 8: return r > 0.25 ? 4 : r > 0.2 ? 5 : r > 0.175 ? 6 : r > 0.15 ? 7 : 8;
case 9: return r > 0.25 ? 4 : r > 0.2 ? 5 : r > 0.175 ? 6 : r > 0.1625 ? 7 : r > 0.15 ? 8 : 9;
}
}
Refine (LEVEL - 4*pow((x*x+y*y)/0.25, 0.5))
Refine 4
Refine (LEVEL + 1./50.*(x*x + y*y)*(4. - LEVEL))
Refine 4
Refine (LEVEL + 1./50.*(x*x + y*y)*(4. - LEVEL))
Refine 6
Refine (x < 0. ? 7 : 8)
Refine 5
Refine 6
Refine 6
Refine 6
Refine 6
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine 6
Refine level
Refine 3
Refine 3
Refine 2
Refine 6
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine 5
Refine 7
Refine {
if (fabs(y) < 0.02 && x > 0.38 && x < 0.42)
return 11;
if (fabs(y) < 0.35 && x > 0.3 && x < 0.5)
return 8;
return 5;
}
Refine LEVEL
Refine LEVEL
Refine floor(LEVEL + 1 - (LEVEL - 2)*fabs(y)/1.5)
Refine floor(LEVEL + 1 - (LEVEL - 2)*fabs(y)/1.5)
Refine floor(LEVEL + 1 - (LEVEL - 2)*fabs(y)/1.5)
Refine LEVEL
Refine LEVEL
Refine 4
Refine 5
Refine LEVEL
Refine 6
Refine 6
Refine 6
Refine 6
Refine LEVEL
Refine LEVEL
Refine 6
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine 5
Refine 4
Refine 8
Refine 8
Refine 8
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine LEVEL
Refine 5
Refine 5
Refine 7*(1. - 4.*(x*x + y*y))
Refine LEVEL
Refine LEVEL