GfsPhysicalParams
From Gerris
GfsPhysicalParams controls the following physical parameters
{
  L = NUMBER
  g = NUMBER
  alpha = [ GfsFunction ]
}
with
L- the size of a GfsBox (default is unity),
 g- for the GfsOcean and GfsRiver solvers only, the strength of the gravitational field (default is unity),
 alpha- for the GfsSimulation solver, the specific volume (i.e the inverse of density) (default is unity).
 
Examples
- Rayleigh-Taylor instability
 - Collapse of a column of grains
 - Savart--Plateau--Rayleigh instability of a water column
 - Atomisation of a pulsed liquid jet
 - Air-water flow around a Series 60 cargo ship
 - Lunar tides in Cook Strait, New Zealand
 - Dam break on complex topography
 - Small amplitude solitary wave interacting with a parabolic hump
 - Shock reflection by a circular cylinder
 - Tsunami runup onto a complex three-dimensional beach
 - The 2004 Indian Ocean tsunami
 - "Garden sprinkler effect" in wave model
 - Cyclone-generated wave field
 - Rotation of a straight interface
 - Flow created by a cylindrical volume source
 - Potential flow around a sphere
 - Viscous flow past a sphere
 - Boundary layer on a rotating disk
 - Poiseuille flow with multilayer Saint-Venant
 - Momentum conservation for large density ratios
 - Coriolis formulation in 3-D
 - Multi-layer Saint-Venant solver
 - Wind-driven stratified lake
 - Air-Water capillary wave
 - Fluids of different densities
 - Pure gravity wave
 - Shape oscillation of an inviscid droplet
 - Scalings for Plateau--Rayleigh pinchoff
 - Sessile drop
 - Geostrophic adjustment
 - Geostrophic adjustment on a beta-plane
 - Geostrophic adjustment with Saint-Venant
 - Non-linear geostrophic adjustment
 - Coastally-trapped waves
 - Coastally-trapped waves with adaptive refinement
 - Gravity waves in a realistic ocean basin
 - Oscillations in a parabolic container
 - Parabolic container with embedded solid
 - Transcritical flow over a bump
 - Transcritical flow with multiple layers
 - Tsunami runup onto a plane beach
 - Lake-at-rest balance in an inclined domain with cut cells
 - Lake-at-rest balance in an inclined domain with bipolar metric
 - Terrain reconstruction
 - Circular dam break on a sphere
 - Circular dam break on a rotating sphere
 - Circular dam break on a ``cubed sphere''
 - Advection of a cosine bell around the sphere
 - Poisson problem with a pure spherical harmonics solution
 - Spherical harmonics with longitude-latitude coordinates
 - Poisson equation on a sphere with Gaussian forcing
 - Gaussian forcing using longitude-latitude coordinates
 - Creeping Couette flow between eccentric cylinders
 - Flow between eccentric cylinders on a stretched grid
 - Rossby--Haurwitz wave
 - Rossby--Haurwitz wave with a free surface
 - Rossby--Haurwitz wave with Saint-Venant
 - Charge relaxation in a planar cross-section
 - Equilibrium of a droplet suspended in an electric field
 - Groundwater flow with piecewise constant permeability
 
  PhysicalParams { alpha = 1./(T*1.225 + (1. - T)*0.1694) }
    PhysicalParams { L = LDOMAIN }
    PhysicalParams { alpha = 1./RHO(T) }
    PhysicalParams { alpha = 1./RHO(T1) }
    PhysicalParams { alpha = 1./rho(T) }
    PhysicalParams { alpha = 1./VAR(T1,RATIO,1.) }
    PhysicalParams { L = 500e3 }
    PhysicalParams { g = 9.81 }
    PhysicalParams { L = 8. }
    PhysicalParams { g = 1. }
    PhysicalParams { g = 1 }
    PhysicalParams { L = 5 g = 9.81 }
    PhysicalParams { L = 3.402 g = 9.81 }
    PhysicalParams { 
	# length of the domain (m)
	L = LENGTH 
        # gravity is 9.81 m/s^2
	g = 9.81
	# from now on, units have been chosen to be metres and seconds
    }
    PhysicalParams { L = 5000 }
    PhysicalParams { L = 3328 }
    PhysicalParams { L = 2. }
    PhysicalParams { L = 2 }
    PhysicalParams { L = 50 }
    PhysicalParams { L = 50 }
    PhysicalParams { L = 3 }
    PhysicalParams { L = 1. }
    PhysicalParams { alpha = 1./rho(T1) }
  PhysicalParams { L = 60 }
    PhysicalParams { L = RATIO g = 100./RE }
    PhysicalParams {
	L = RATIO g = 1./(ALPHA*RE)
	alpha = 1./(1. + DRHO)
    }
  PhysicalParams { alpha = 1./RHO(T1) }
  PhysicalParams { alpha = 1./(T + 0.1*(1. - T)) }
  PhysicalParams { alpha = 1./(T + 0.1*(1. - T)) }
    PhysicalParams { alpha = 1./RHO(T1) }
   PhysicalParams { alpha = 1./(T + 1e-2*(1. - T)) }
    PhysicalParams { alpha = 1./(T + 0.01*(1. - T)) }
  PhysicalParams { L = L0 g = G }
  PhysicalParams { g = 9.4534734306584e-4 }
  PhysicalParams { L = L0 g = G }
  PhysicalParams { L = 1 }
  PhysicalParams { g = 5.87060327757e-3 }
  PhysicalParams { g = 5.87060327757e-3 }
    PhysicalParams { g = 19.62 }
    PhysicalParams { L = 10000 }
    PhysicalParams { g = G }
    PhysicalParams { L = 10000 }
    PhysicalParams { g = G }
    PhysicalParams { L = 25 g = 9.81 }
    PhysicalParams { L = LENGTH g = G }
    PhysicalParams { L = 60000 }
    PhysicalParams { g = 9.81 }
    PhysicalParams { L = 10 g = 9.81 }
    PhysicalParams { g = 9.81 }
    PhysicalParams { L = 8 }
    PhysicalParams { L = LENGTH }
    PhysicalParams { L = LENGTH }
    PhysicalParams { L = 2.*M_PI/4. }
  PhysicalParams { L = 2.*M_PI/4. }
  PhysicalParams { L = 2.*M_PI/4. }
  PhysicalParams { L = M_PI }
  PhysicalParams { L = 2.*M_PI/4. }
  PhysicalParams { L = M_PI }
  PhysicalParams { L = 2.5 }
  PhysicalParams { L = 2.5 }
    PhysicalParams { L = 2.*M_PI*AR/4. }
    PhysicalParams { 
	L = 2.*M_PI*AR/4. 
        # g*H0
	g = G*8e3
    }
    PhysicalParams { L = 2.*M_PI*AR/4. g = G }
    PhysicalParams { L = 2 }
    PhysicalParams { L = 2 }
    PhysicalParams { alpha = k }
