GfsPhysicalParams
From Gerris
GfsPhysicalParams controls the following physical parameters
{ L = NUMBER g = NUMBER alpha = [ GfsFunction ] }
with
L
- the size of a GfsBox (default is unity),
g
- for the GfsOcean and GfsRiver solvers only, the strength of the gravitational field (default is unity),
alpha
- for the GfsSimulation solver, the specific volume (i.e the inverse of density) (default is unity).
Examples
- Rayleigh-Taylor instability
- Collapse of a column of grains
- Savart--Plateau--Rayleigh instability of a water column
- Atomisation of a pulsed liquid jet
- Air-water flow around a Series 60 cargo ship
- Lunar tides in Cook Strait, New Zealand
- Dam break on complex topography
- Small amplitude solitary wave interacting with a parabolic hump
- Shock reflection by a circular cylinder
- Tsunami runup onto a complex three-dimensional beach
- The 2004 Indian Ocean tsunami
- "Garden sprinkler effect" in wave model
- Cyclone-generated wave field
- Rotation of a straight interface
- Flow created by a cylindrical volume source
- Potential flow around a sphere
- Viscous flow past a sphere
- Boundary layer on a rotating disk
- Poiseuille flow with multilayer Saint-Venant
- Momentum conservation for large density ratios
- Coriolis formulation in 3-D
- Multi-layer Saint-Venant solver
- Wind-driven stratified lake
- Air-Water capillary wave
- Fluids of different densities
- Pure gravity wave
- Shape oscillation of an inviscid droplet
- Scalings for Plateau--Rayleigh pinchoff
- Sessile drop
- Geostrophic adjustment
- Geostrophic adjustment on a beta-plane
- Geostrophic adjustment with Saint-Venant
- Non-linear geostrophic adjustment
- Coastally-trapped waves
- Coastally-trapped waves with adaptive refinement
- Gravity waves in a realistic ocean basin
- Oscillations in a parabolic container
- Parabolic container with embedded solid
- Transcritical flow over a bump
- Transcritical flow with multiple layers
- Tsunami runup onto a plane beach
- Lake-at-rest balance in an inclined domain with cut cells
- Lake-at-rest balance in an inclined domain with bipolar metric
- Terrain reconstruction
- Circular dam break on a sphere
- Circular dam break on a rotating sphere
- Circular dam break on a ``cubed sphere''
- Advection of a cosine bell around the sphere
- Poisson problem with a pure spherical harmonics solution
- Spherical harmonics with longitude-latitude coordinates
- Poisson equation on a sphere with Gaussian forcing
- Gaussian forcing using longitude-latitude coordinates
- Creeping Couette flow between eccentric cylinders
- Flow between eccentric cylinders on a stretched grid
- Rossby--Haurwitz wave
- Rossby--Haurwitz wave with a free surface
- Rossby--Haurwitz wave with Saint-Venant
- Charge relaxation in a planar cross-section
- Equilibrium of a droplet suspended in an electric field
- Groundwater flow with piecewise constant permeability
PhysicalParams { alpha = 1./(T*1.225 + (1. - T)*0.1694) }
PhysicalParams { L = LDOMAIN }
PhysicalParams { alpha = 1./RHO(T) }
PhysicalParams { alpha = 1./RHO(T1) }
PhysicalParams { alpha = 1./rho(T) }
PhysicalParams { alpha = 1./VAR(T1,RATIO,1.) }
PhysicalParams { L = 500e3 }
PhysicalParams { g = 9.81 }
PhysicalParams { L = 8. }
PhysicalParams { g = 1. }
PhysicalParams { g = 1 }
PhysicalParams { L = 5 g = 9.81 }
PhysicalParams { L = 3.402 g = 9.81 }
PhysicalParams {
# length of the domain (m)
L = LENGTH
# gravity is 9.81 m/s^2
g = 9.81
# from now on, units have been chosen to be metres and seconds
}
PhysicalParams { L = 5000 }
PhysicalParams { L = 3328 }
PhysicalParams { L = 2. }
PhysicalParams { L = 2 }
PhysicalParams { L = 50 }
PhysicalParams { L = 50 }
PhysicalParams { L = 3 }
PhysicalParams { L = 1. }
PhysicalParams { alpha = 1./rho(T1) }
PhysicalParams { L = 60 }
PhysicalParams { L = RATIO g = 100./RE }
PhysicalParams {
L = RATIO g = 1./(ALPHA*RE)
alpha = 1./(1. + DRHO)
}
PhysicalParams { alpha = 1./RHO(T1) }
PhysicalParams { alpha = 1./(T + 0.1*(1. - T)) }
PhysicalParams { alpha = 1./(T + 0.1*(1. - T)) }
PhysicalParams { alpha = 1./RHO(T1) }
PhysicalParams { alpha = 1./(T + 1e-2*(1. - T)) }
PhysicalParams { alpha = 1./(T + 0.01*(1. - T)) }
PhysicalParams { L = L0 g = G }
PhysicalParams { g = 9.4534734306584e-4 }
PhysicalParams { L = L0 g = G }
PhysicalParams { L = 1 }
PhysicalParams { g = 5.87060327757e-3 }
PhysicalParams { g = 5.87060327757e-3 }
PhysicalParams { g = 19.62 }
PhysicalParams { L = 10000 }
PhysicalParams { g = G }
PhysicalParams { L = 10000 }
PhysicalParams { g = G }
PhysicalParams { L = 25 g = 9.81 }
PhysicalParams { L = LENGTH g = G }
PhysicalParams { L = 60000 }
PhysicalParams { g = 9.81 }
PhysicalParams { L = 10 g = 9.81 }
PhysicalParams { g = 9.81 }
PhysicalParams { L = 8 }
PhysicalParams { L = LENGTH }
PhysicalParams { L = LENGTH }
PhysicalParams { L = 2.*M_PI/4. }
PhysicalParams { L = 2.*M_PI/4. }
PhysicalParams { L = 2.*M_PI/4. }
PhysicalParams { L = M_PI }
PhysicalParams { L = 2.*M_PI/4. }
PhysicalParams { L = M_PI }
PhysicalParams { L = 2.5 }
PhysicalParams { L = 2.5 }
PhysicalParams { L = 2.*M_PI*AR/4. }
PhysicalParams {
L = 2.*M_PI*AR/4.
# g*H0
g = G*8e3
}
PhysicalParams { L = 2.*M_PI*AR/4. g = G }
PhysicalParams { L = 2 }
PhysicalParams { L = 2 }
PhysicalParams { alpha = k }