GfsOutputScalarNorm
From Gerris
GfsOutputScalarNorm is used to write the volume-weighted norms over the whole domain of a given scalar.
The statistics are written using the following formatting:
DESCRIPTION time: T first: FIRST second: SECOND infty: INFTY
with:
DESCRIPTION- a description of the scalar field (without any spaces),
 T- the physical time,
 FIRST- the 1-norm i.e. the average of the absolute values,
 SECOND- the 2-norm i.e. the root-mean-square norm,
 INFTY- the infinity-norm i.e. the maximum absolute value.
 
The syntax in parameter files is:
[ GfsOutputScalar ]
Examples
- Collapse of a column of grains
 - Savart--Plateau--Rayleigh instability of a water column
 - Lunar tides in Cook Strait, New Zealand
 - Dam break on complex topography
 - Tsunami runup onto a complex three-dimensional beach
 - The 2004 Indian Ocean tsunami
 - Conservation of diffusive tracer
 - Estimation of the numerical viscosity
 - Estimation of the numerical viscosity with refined box
 - Numerical viscosity for the skew-symmetric scheme
 - Numerical viscosity for the skew-symmetric scheme with refined box
 - Numerical viscosity for vorticity/streamfunction formulation
 - Lid-driven cavity at Re=1000
 - Lid-driven cavity at Re=1000 (explicit scheme)
 - Lid-driven cavity with a non-uniform metric
 - Lid-driven cavity on an anisotropic mesh
 - Bagnold flow of a granular material
 - Creeping Couette flow of Generalised Newtonian fluids
 - Hydrostatic balance with solid boundaries and viscosity
 - Hydrostatic balance with quadratic pressure profile
 - Potential flow around a thin plate
 - Circular droplet in equilibrium
 - Axisymmetric spherical droplet in equilibrium
 - Planar capillary waves
 - Air-Water capillary wave
 - Fluids of different densities
 - Pure gravity wave
 - Scalings for Plateau--Rayleigh pinchoff
 - Sessile drop
 - Lake-at-rest balance in an inclined domain with cut cells
 - Lake-at-rest balance in an inclined domain with bipolar metric
 - Creeping Couette flow between cylinders
 - Creeping Couette flow between eccentric cylinders
 - Flow between eccentric cylinders using bipolar coordinates
 - Flow between eccentric cylinders on a stretched grid
 - Rossby--Haurwitz wave
 - Rossby--Haurwitz wave with a free surface
 - Rossby--Haurwitz wave with Saint-Venant
 - Dielectric-dieletric planar balance
 - Balance with solid boundaries
 
    OutputScalarNorm { istep = 10 } X-H0-LEVEL { v = (T > 0.1 ? X : G_MAXDOUBLE) }
    OutputScalarNorm { istep = 10 } Y-H0-LEVEL { v = (T > 0.1 ? Y : G_MAXDOUBLE) }
    OutputScalarNorm { istep = 10 } Yc-H0-LEVEL { v = (x < 0.1 ? Y : G_MAXDOUBLE) }
    OutputScalarNorm { istep = 1 } v { v = Velocity }
    OutputScalarNorm { istep = 1 } p { v = P }
    OutputScalarNorm { istep = 1 } u { v = Velocity }
    OutputScalarNorm { istep = 10 } a0 { v = sqrt(A0*A0 + B0*B0) }
    OutputScalarNorm { istep = 10 } u { v = (P > 0. ? U/P : 0.) }
    OutputScalarNorm { istep = 1 } u { v = Velocity }
    OutputScalarNorm { istep = 1 } u { v = Velocity }
    OutputScalarNorm { istep = 1 } U { v = U }
    OutputScalarNorm { istep = 1 } V { v = V }
    OutputScalarNorm { istep = 1 } hwet { v = Hwet }
    OutputScalarNorm { istep = 1 } diff { v = (T - Te) }
  OutputScalarNorm { istep = 1 } divLEVEL { v = Divergence }
  OutputScalarNorm { istep = 1 } divLEVEL { v = Divergence }
  OutputScalarNorm { istep = 1 } divLEVEL { v = Divergence }
  OutputScalarNorm { istep = 1 } div-LEVEL { v = Divergence }
  OutputScalarNorm { istep = 1 } divLEVEL { v = (dx("U") + dy("V")) }
  OutputScalarNorm { istep = 10 } du { v = DU }
  OutputScalarNorm { istep = 10 } du { v = DU }
  OutputScalarNorm { istep = 10 } du { v = DU }
  OutputScalarNorm { istep = 10 } du { v = DU }
    OutputScalarNorm { istep = 10 } du-LEVEL { v = DU }
  OutputScalarNorm { istep = 1 } du-MODEL { v = DU }
    OutputScalarNorm { istep = 1 } v { v = V }
    OutputScalarNorm { istep = 1 } v { v = V }
  OutputScalarNorm { start = end } stdout { v = Velocity } 
  OutputScalarNorm { istep = 1 } {
    awk '{ print MU*$3/(0.8*0.8), $9*sqrt(0.8) }' > La-LAPLACE-LEVEL
  } { v = Velocity }
  OutputScalarNorm { istep = 1 } {
    awk '{ print MU*$3/(0.8*0.8), $5, $7, $9 }' > E-LAPLACE-LEVEL
  } { v = (Tref - T) }
  OutputScalarNorm { istep = 1 } {
    awk '{ print MU*$3/(0.8*0.8), $5, $7, $9 }' > EK-LAPLACE-LEVEL
  } { v = (T > 0 && T < 1 ? K - 2.5 : 0) }
  OutputScalarNorm { istep = 1 } {
    awk '{ print MU*$3/(0.8*0.8), $9*sqrt(0.8); fflush (stdout); }' > La-LAPLACE-LEVEL
  } { v = Velocity }
  OutputScalarNorm { istep = 1 } {
    awk '{ print MU*$3/(0.8*0.8), $5, $7, $9; fflush (stdout); }' > E-LAPLACE-LEVEL
  } { v = (Tref - T) }
  OutputScalarNorm { istep = 1 } {
    awk '{ print MU*$3/(0.8*0.8), $5, $7, $9; fflush (stdout); }' > EK-LAPLACE-LEVEL
  } { v = (T > 0 && T < 1 ? (K - 5.)/2. : 0) }
  OutputScalarNorm { step = 3.04290519077e-3 } {
      awk '{printf ("%g %g\n", $3*11.1366559937, $9); fflush(stdout); }' > wave-LEVEL
  } { v = (T > 0. && T < 1. ? Y : 0.) }
  OutputScalarNorm { step = 0.00198785108553814829 } {
      awk '{printf ("%g %g\n", $3*15.7402, $9); fflush(stdout); }' > wave-LEVEL
  } { v = (T > 0. && T < 1. ? Y : 0.) }
  OutputScalarNorm { step = .00225584983639310905 } {
      awk '{printf ("%g %g\n", $3*15.016663878457, $9); fflush(stdout); }' > wave-LEVEL
  } { v = (T > 0. && T < 1. ? Y : 0.) }
  OutputScalarNorm { step = .00225584983639310905 } {
      awk '{printf ("%g %g\n", $3*16.032448313657, $9); fflush(stdout); }' > wave-LEVEL
  } { v = (T > 1e-6 && T < 1. - 1e-6 ? Y : 0.) }
   OutputScalarNorm { istep = 1 } u { v = U }
    OutputScalarNorm { istep = 10 } v-ANGLE { v = Velocity }
    OutputScalarNorm { start = end } u { v = U }
    OutputScalarNorm { start = end } u { v = U }
    OutputScalarNorm { istep = 1 } dv { v = DV }
  OutputScalarNorm { istep = 1 } du { v = DU }
  OutputScalarNorm { istep = 1 } du { v = DU }
  OutputScalarNorm { istep = 1 } du { v = DU }
    OutputScalarNorm { istep = 10 } v-LEVEL { v = V }
    OutputScalarNorm { istep = 10 } v-LEVEL { v = V }
    OutputScalarNorm { istep = 10 } v-LEVEL { v = V }
    OutputScalarNorm { start = end } v { v = V }
    OutputScalarNorm { start = end } v { v = V }
