GfsOutputScalarNorm
From Gerris
GfsOutputScalarNorm is used to write the volume-weighted norms over the whole domain of a given scalar.
The statistics are written using the following formatting:
DESCRIPTION time: T first: FIRST second: SECOND infty: INFTY
with:
DESCRIPTION
- a description of the scalar field (without any spaces),
T
- the physical time,
FIRST
- the 1-norm i.e. the average of the absolute values,
SECOND
- the 2-norm i.e. the root-mean-square norm,
INFTY
- the infinity-norm i.e. the maximum absolute value.
The syntax in parameter files is:
[ GfsOutputScalar ]
Examples
- Collapse of a column of grains
- Savart--Plateau--Rayleigh instability of a water column
- Lunar tides in Cook Strait, New Zealand
- Dam break on complex topography
- Tsunami runup onto a complex three-dimensional beach
- The 2004 Indian Ocean tsunami
- Conservation of diffusive tracer
- Estimation of the numerical viscosity
- Estimation of the numerical viscosity with refined box
- Numerical viscosity for the skew-symmetric scheme
- Numerical viscosity for the skew-symmetric scheme with refined box
- Numerical viscosity for vorticity/streamfunction formulation
- Lid-driven cavity at Re=1000
- Lid-driven cavity at Re=1000 (explicit scheme)
- Lid-driven cavity with a non-uniform metric
- Lid-driven cavity on an anisotropic mesh
- Bagnold flow of a granular material
- Creeping Couette flow of Generalised Newtonian fluids
- Hydrostatic balance with solid boundaries and viscosity
- Hydrostatic balance with quadratic pressure profile
- Potential flow around a thin plate
- Circular droplet in equilibrium
- Axisymmetric spherical droplet in equilibrium
- Planar capillary waves
- Air-Water capillary wave
- Fluids of different densities
- Pure gravity wave
- Scalings for Plateau--Rayleigh pinchoff
- Sessile drop
- Lake-at-rest balance in an inclined domain with cut cells
- Lake-at-rest balance in an inclined domain with bipolar metric
- Creeping Couette flow between cylinders
- Creeping Couette flow between eccentric cylinders
- Flow between eccentric cylinders using bipolar coordinates
- Flow between eccentric cylinders on a stretched grid
- Rossby--Haurwitz wave
- Rossby--Haurwitz wave with a free surface
- Rossby--Haurwitz wave with Saint-Venant
- Dielectric-dieletric planar balance
- Balance with solid boundaries
OutputScalarNorm { istep = 10 } X-H0-LEVEL { v = (T > 0.1 ? X : G_MAXDOUBLE) }
OutputScalarNorm { istep = 10 } Y-H0-LEVEL { v = (T > 0.1 ? Y : G_MAXDOUBLE) }
OutputScalarNorm { istep = 10 } Yc-H0-LEVEL { v = (x < 0.1 ? Y : G_MAXDOUBLE) }
OutputScalarNorm { istep = 1 } v { v = Velocity }
OutputScalarNorm { istep = 1 } p { v = P }
OutputScalarNorm { istep = 1 } u { v = Velocity }
OutputScalarNorm { istep = 10 } a0 { v = sqrt(A0*A0 + B0*B0) }
OutputScalarNorm { istep = 10 } u { v = (P > 0. ? U/P : 0.) }
OutputScalarNorm { istep = 1 } u { v = Velocity }
OutputScalarNorm { istep = 1 } u { v = Velocity }
OutputScalarNorm { istep = 1 } U { v = U }
OutputScalarNorm { istep = 1 } V { v = V }
OutputScalarNorm { istep = 1 } hwet { v = Hwet }
OutputScalarNorm { istep = 1 } diff { v = (T - Te) }
OutputScalarNorm { istep = 1 } divLEVEL { v = Divergence }
OutputScalarNorm { istep = 1 } divLEVEL { v = Divergence }
OutputScalarNorm { istep = 1 } divLEVEL { v = Divergence }
OutputScalarNorm { istep = 1 } div-LEVEL { v = Divergence }
OutputScalarNorm { istep = 1 } divLEVEL { v = (dx("U") + dy("V")) }
OutputScalarNorm { istep = 10 } du { v = DU }
OutputScalarNorm { istep = 10 } du { v = DU }
OutputScalarNorm { istep = 10 } du { v = DU }
OutputScalarNorm { istep = 10 } du { v = DU }
OutputScalarNorm { istep = 10 } du-LEVEL { v = DU }
OutputScalarNorm { istep = 1 } du-MODEL { v = DU }
OutputScalarNorm { istep = 1 } v { v = V }
OutputScalarNorm { istep = 1 } v { v = V }
OutputScalarNorm { start = end } stdout { v = Velocity }
OutputScalarNorm { istep = 1 } {
awk '{ print MU*$3/(0.8*0.8), $9*sqrt(0.8) }' > La-LAPLACE-LEVEL
} { v = Velocity }
OutputScalarNorm { istep = 1 } {
awk '{ print MU*$3/(0.8*0.8), $5, $7, $9 }' > E-LAPLACE-LEVEL
} { v = (Tref - T) }
OutputScalarNorm { istep = 1 } {
awk '{ print MU*$3/(0.8*0.8), $5, $7, $9 }' > EK-LAPLACE-LEVEL
} { v = (T > 0 && T < 1 ? K - 2.5 : 0) }
OutputScalarNorm { istep = 1 } {
awk '{ print MU*$3/(0.8*0.8), $9*sqrt(0.8); fflush (stdout); }' > La-LAPLACE-LEVEL
} { v = Velocity }
OutputScalarNorm { istep = 1 } {
awk '{ print MU*$3/(0.8*0.8), $5, $7, $9; fflush (stdout); }' > E-LAPLACE-LEVEL
} { v = (Tref - T) }
OutputScalarNorm { istep = 1 } {
awk '{ print MU*$3/(0.8*0.8), $5, $7, $9; fflush (stdout); }' > EK-LAPLACE-LEVEL
} { v = (T > 0 && T < 1 ? (K - 5.)/2. : 0) }
OutputScalarNorm { step = 3.04290519077e-3 } {
awk '{printf ("%g %g\n", $3*11.1366559937, $9); fflush(stdout); }' > wave-LEVEL
} { v = (T > 0. && T < 1. ? Y : 0.) }
OutputScalarNorm { step = 0.00198785108553814829 } {
awk '{printf ("%g %g\n", $3*15.7402, $9); fflush(stdout); }' > wave-LEVEL
} { v = (T > 0. && T < 1. ? Y : 0.) }
OutputScalarNorm { step = .00225584983639310905 } {
awk '{printf ("%g %g\n", $3*15.016663878457, $9); fflush(stdout); }' > wave-LEVEL
} { v = (T > 0. && T < 1. ? Y : 0.) }
OutputScalarNorm { step = .00225584983639310905 } {
awk '{printf ("%g %g\n", $3*16.032448313657, $9); fflush(stdout); }' > wave-LEVEL
} { v = (T > 1e-6 && T < 1. - 1e-6 ? Y : 0.) }
OutputScalarNorm { istep = 1 } u { v = U }
OutputScalarNorm { istep = 10 } v-ANGLE { v = Velocity }
OutputScalarNorm { start = end } u { v = U }
OutputScalarNorm { start = end } u { v = U }
OutputScalarNorm { istep = 1 } dv { v = DV }
OutputScalarNorm { istep = 1 } du { v = DU }
OutputScalarNorm { istep = 1 } du { v = DU }
OutputScalarNorm { istep = 1 } du { v = DU }
OutputScalarNorm { istep = 10 } v-LEVEL { v = V }
OutputScalarNorm { istep = 10 } v-LEVEL { v = V }
OutputScalarNorm { istep = 10 } v-LEVEL { v = V }
OutputScalarNorm { start = end } v { v = V }
OutputScalarNorm { start = end } v { v = V }