GfsBcDirichlet
From Gerris
GfsBcDirichlet is used to impose a Dirichlet boundary condition i.e. the value of the variable on the boundary.
The syntax in parameter files is
[ GfsBc ] [ GfsFunction ]
where the GfsFunction is the value of the variable on the boundary.
Examples
- B\'enard--von K\'arm\'an Vortex Street for flow around a cylinder at Re=160
- Vortex street around a "heated" cylinder
- Parallel simulation on four processors
- Collapse of a column of grains
- Viscous folding of a fluid interface
- Turbulent air flow around RV Tangaroa
- Atomisation of a pulsed liquid jet
- Air-water flow around a Series 60 cargo ship
- Shock reflection by a circular cylinder
- Convergence of the Poisson solver
- Rotation of a straight interface
- Potential flow around a sphere
- Viscous flow past a sphere
- Mass conservation
- Mass conservation with solid boundary
- Boundary layer on a rotating disk
- Lid-driven cavity at Re=1000
- Lid-driven cavity at Re=1000 (explicit scheme)
- Lid-driven cavity with a non-uniform metric
- Lid-driven cavity on an anisotropic mesh
- Poiseuille flow
- Bagnold flow of a granular material
- Poiseuille flow with metric
- Wind-driven lake
- Convergence of a potential flow solution
- Flow through a divergent channel
- Potential flow around a thin plate
- Translation of an hexagon in a uniform flow
- Transcritical flow over a bump
- Transcritical flow with multiple layers
- Creeping Couette flow between cylinders
- Flow between eccentric cylinders using bipolar coordinates
- Dielectric-dieletric planar balance
- Balance with solid boundaries
- Relaxation of a charge bump
- Charge relaxation in an axisymmetric insulated conducting column
- Charge relaxation in a planar cross-section
- Equilibrium of a droplet suspended in an electric field
- Gouy-Chapman Debye layer
- Simple example of groundwater flow following Darcy's law
- Groundwater flow with piecewise constant permeability
BcDirichlet U 1
BcDirichlet T { return y < 0. ? 1. : 0.; }
BcDirichlet U 1
BcDirichlet U 1
BcDirichlet T { return y < 0. ? 1. : 0.; }
BcDirichlet P -RHOF*LDOMAIN
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet V 0
BcDirichlet U velocity_bc(y, t)
BcDirichlet U 0
BcDirichlet U 0
BcDirichlet U 1
BcDirichlet P 0
BcDirichlet U T0*(1. + 0.05*sin (10.*2.*M_PI*t))
BcDirichlet T T0
BcDirichlet V 0
BcDirichlet W 0
BcDirichlet P 0
BcDirichlet V 0
BcDirichlet W 0
BcDirichlet P 0
BcDirichlet V 0
BcDirichlet W 0
BcDirichlet P 3.505271526
BcDirichlet U 22.049341608
left = Boundary { BcDirichlet P (sin (M_PI*3.*x)*sin (M_PI*3.*y)) }
right = Boundary { BcDirichlet P (sin (M_PI*3.*x)*sin (M_PI*3.*y)) }
top = Boundary { BcDirichlet P (sin (M_PI*3.*x)*sin (M_PI*3.*y)) }
bottom = Boundary { BcDirichlet P (sin (M_PI*3.*x)*sin (M_PI*3.*y)) }
BcDirichlet U y
BcDirichlet U y
BcDirichlet U y
BcDirichlet U y
left = Boundary { BcDirichlet U U0 }
right = Boundary { BcDirichlet U U0 }
left = Boundary { BcDirichlet U U0 }
BcDirichlet U 1
BcDirichlet V 0
BcDirichlet U 1
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet V 0
BcDirichlet W y
BcDirichlet P 0.
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet W y
BcDirichlet P 0.
BcDirichlet W y
BcDirichlet P 0.
bottom = Boundary { BcDirichlet W 0 }
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet W y
BcDirichlet P 0.
BcDirichlet U 0
BcDirichlet U 1
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 1
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 1
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 1
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet U 0
BcDirichlet U 0
BcDirichlet P 0
BcDirichlet U 0
BcDirichlet U 0
BcDirichlet U 0
BcDirichlet U 0
left = Boundary { BcDirichlet U 1 }
right = Boundary { BcDirichlet U 1 }
GfsBox { left = Boundary { BcDirichlet U 1 } }
left = Boundary { BcDirichlet U 1 }
BcDirichlet U 1
BcDirichlet T 1
BcDirichlet P 0.33
BcDirichlet U 0.18
BcDirichlet P HE
BcDirichlet U Q/NL
BcDirichlet V 0.25
BcDirichlet T 0.25
BcDirichlet V 0.
BcDirichlet T 0
left = Boundary { BcDirichlet V 0 }
right = Boundary { BcDirichlet V 1 }
left = Boundary { BcDirichlet V 0 }
right = Boundary { BcDirichlet V 1 }
left = Boundary { BcDirichlet V 0 }
right = Boundary { BcDirichlet V 1 }
left = Boundary { BcDirichlet V 0 }
right = Boundary { BcDirichlet V 1 }
left = Boundary { BcDirichlet V 0 }
right = Boundary { BcDirichlet V 1 }
left = Boundary { BcDirichlet V 0 }
right = Boundary { BcDirichlet V 1 }
left = Boundary { BcDirichlet V 0 }
right = Boundary { BcDirichlet V 1 }
left = Boundary { BcDirichlet V 0 }
right = Boundary { BcDirichlet V 1 }
BcDirichlet Phi 1
BcDirichlet P 0
BcDirichlet Phi 0.
BcDirichlet Phi 1
BcDirichlet P 0
BcDirichlet Phi 0.
left = Boundary { BcDirichlet Phi 0 }
right = Boundary { BcDirichlet Phi 0 }
top = Boundary { BcDirichlet Phi 0 }
bottom = Boundary { BcDirichlet Phi 0 }
top = Boundary { BcDirichlet Phi 0 }
top = Boundary { BcDirichlet Phi 0 }
bottom = Boundary { BcDirichlet Phi 0 }
left = Boundary { BcDirichlet Phi 0 }
right = Boundary { BcDirichlet Phi 0 }
BcDirichlet Phi Ef*x
BcDirichlet Phi Ef*x
BcDirichlet Phi Ef*x
BcDirichlet Phi Volt
BcDirichlet Cpos exp(-Volt)
BcDirichlet Cneg exp(Volt)
BcDirichlet Phi 0.
BcDirichlet Cpos 1.
BcDirichlet Cneg 1.
BcDirichlet P 0
BcDirichlet U 0
BcDirichlet P -M_PI/2
BcDirichlet V 0
BcDirichlet P 0
BcDirichlet U 0
BcDirichlet P -2*M_PI/3
BcDirichlet V 0