GfsAdaptGradient
From Gerris
GfsAdaptGradient uses a "cell cost" defined as the norm of the local gradient of a given variable or function multiplied by the cell size.
The syntax in parameter files is:
[ GfsAdapt ] [ GfsFunction ]
Examples
- B\'enard--von K\'arm\'an Vortex Street for flow around a cylinder at Re=160
- Vortex street around a "heated" cylinder
- Parallel simulation on four processors
- Rayleigh-Taylor instability
- Boussinesq flow generated by a heated cylinder
- Collapse of a column of grains
- Small amplitude solitary wave interacting with a parabolic hump
- Shock reflection by a circular cylinder
- Tsunami runup onto a complex three-dimensional beach
- The 2004 Indian Ocean tsunami
- "Garden sprinkler effect" in wave model
- Time-reversed VOF advection in a shear flow
- Time-reversed advection of a VOF concentration
- Conservation of diffusive tracer
- Viscous flow past a sphere
- Mass conservation
- Mass conservation with solid boundary
- Momentum conservation for large density ratios
- Circular droplet in equilibrium
- Axisymmetric spherical droplet in equilibrium
- Scalings for Plateau--Rayleigh pinchoff
- Circular dam break on a ``cubed sphere''
- Advection of a cosine bell around the sphere
- Charge relaxation in an axisymmetric insulated conducting column
- Charge relaxation in a planar cross-section
- Equilibrium of a droplet suspended in an electric field
- Gouy-Chapman Debye layer
AdaptGradient { istep = 1 } { maxlevel = 6 cmax = 1e-2 } T
AdaptGradient { istep = 1 } { maxlevel = 6 cmax = 1e-2 } T
AdaptGradient { istep = 1 } { maxlevel = 6 cmax = 1e-2 } T
AdaptGradient { istep = 1 } { maxlevel = 7 cmax = 1e-2 } T
AdaptGradient { istep = 1 } { maxlevel = 8 cmax = 5e-2 } T
AdaptGradient { istep = 1 } {
cmax = 0
maxlevel = LEVEL
} T
AdaptGradient { istep = 1 } {
cmax = 1e-4
cfactor = 2
maxlevel = 8
minlevel = 6
} (P + Zb)
AdaptGradient { istep = 1 } {
cmax = 0.1
cfactor = 2
maxlevel = 9
} P
AdaptGradient { istep = 1 } {
cmax = 1e-3
cfactor = 2
maxlevel = 9
minlevel = 6
} (P < DRY ? 0. : P + Zb)
AdaptGradient { start = 212 istep = 1 end = 272 } {
cmax = 0.05 cfactor = 2
minlevel = 5 maxlevel = LEVEL
} D
AdaptGradient { start = 528 istep = 1 end = 588 } {
cmax = 0.05 cfactor = 2
minlevel = 5 maxlevel = LEVEL
} D
AdaptGradient { start = 853 istep = 1 end = 913 } {
cmax = 0.05 cfactor = 2
minlevel = 5 maxlevel = LEVEL
} D
AdaptGradient { start = 1213 istep = 1 end = 1273 } {
cmax = 0.05 cfactor = 2
minlevel = 5 maxlevel = LEVEL
} D
AdaptGradient { istep = 1 } {
cmax = 0.05 cfactor = 2
minlevel = 5 maxlevel = LEVEL
} (P < DRY ? 0. : P + Zb)
AdaptGradient { istep = 1 } { cmax = 0.04 minlevel = MINLEVEL maxlevel = 6 } Hs
AdaptGradient { istart = 1 istep = 1 } { cmax = 0 maxlevel = 8 } T
AdaptGradient { istart = 1 istep = 1 } { cmax = 0 maxlevel = LEVEL } T
AdaptGradient { istep = 1 } { minlevel = 3 maxlevel = 5 cmax = 1e-2 } T
AdaptGradient { istep = 1 } { cmax = 5e-2 maxlevel = LEVEL } U
AdaptGradient { istep = 1 } { cmax = 5e-2 maxlevel = LEVEL } V
AdaptGradient { istep = 1 } { cmax = 1e-3 minlevel = 4 maxlevel = (x < 0.25 ? 6 : 7) } T1
AdaptGradient { istep = 1 } { cmax = 1e-3 minlevel = 4 maxlevel = (x < 0. ? 7 : 8) } T1
AdaptGradient { istep = 1 } { cmax = 1e-3 maxlevel = level } T
AdaptGradient { istep = 1 } { cmax = 1e-6 maxlevel = LEVEL } T
AdaptGradient { istep = 1 } { cmax = 1e-6 maxlevel = LEVEL } T
AdaptGradient { istep = 1 } { maxlevel = 6 cmax = 0 } T
AdaptGradient { istep = 1 } { cmax = 1e-2 maxlevel = 8 } P
AdaptGradient { istep = 1 } { cmax = 1e-4 maxlevel = LEVEL } T
AdaptGradient { istep = 1 } { cmax = 1e-4 minlevel = 5 maxlevel = LEVEL } T
AdaptGradient { istep = 1 } { cmax = 1e-4 minlevel = 5 maxlevel = LEVEL + 1 } T
AdaptGradient { istep = 1 } { cmax = 1e-4 minlevel = 4 maxlevel = 7 } T
AdaptGradient { istep = 5 } { cmax = 0.02 minlevel = 3 maxlevel = 5 } Cneg