GfsInitFraction
From Gerris
GfsInitFraction is used to initialise a volume-fraction field from a given surface (typically the shape of an interface to be represented using a Volume-Of-Fluid formulation).
The syntax in parameter files is:
[ GfsGenericInit ] V [ GfsSurface ]
where V
is a GfsVariable.
If GfsSurface is defined implicitly, by convention the volume fraction of cells not cut by the interface is set to one if the implicit function is positive and zero otherwise.
Examples
- Rayleigh-Taylor instability
- Collapse of a column of grains
- Savart--Plateau--Rayleigh instability of a water column
- Atomisation of a pulsed liquid jet
- Air-water flow around a Series 60 cargo ship
- Time-reversed VOF advection in a shear flow
- Time-reversed advection of a VOF concentration
- Time-reversed advection with curvature-based refinement
- Rotation of a straight interface
- Comparison between explicit and implicit diffusion schemes on concentration tracer
- Conservation of diffusive tracer
- Flow created by a cylindrical volume source
- Mass conservation
- Mass conservation with solid boundary
- Momentum conservation for large density ratios
- Circular droplet in equilibrium
- Axisymmetric spherical droplet in equilibrium
- Planar capillary waves
- Air-Water capillary wave
- Fluids of different densities
- Pure gravity wave
- Shape oscillation of an inviscid droplet
- Height-Function on parallel subdomains
- Scalings for Plateau--Rayleigh pinchoff
- Sessile drop
- Circular dam break on a sphere
- Circular dam break on a rotating sphere
- Circular dam break on a ``cubed sphere''
- Dielectric-dieletric planar balance
- Balance with solid boundaries
- Charge relaxation in an axisymmetric insulated conducting column
- Charge relaxation in a planar cross-section
- Equilibrium of a droplet suspended in an electric field
InitFraction {} T (0.05*cos (2.*M_PI*x) + y) { ty = 0.5 }
InitFraction Ti ({
double diametre = 5e-3;
double r0 = 0.677/6.26;
double centre = x - 4.*diametre/r0;
double top = y - H0 + 9.*diametre/r0;
double side = x - R0 + 5.*diametre/r0;
return union (union (-top, -side), centre);
})
InitFraction T (union(H0 - y, R0 - x))
InitFraction {} T ({
x -= 0.5;
y += 0.5; z += 0.5;
double r = RADIUS*(1. + EPSILON*cos(M_PI*x));
return r*r - y*y - z*z;
})
InitFraction T0 (radius*radius - R2(y,z))
InitFraction T (1e-4 - z)
InitFraction T (ellipse (0, -.236338, 0.2, 0.2))
InitFraction { start = end } Tref (ellipse (0, -.236338, 0.2, 0.2))
InitFraction T CIRCLE
InitFraction { start = end } Tref CIRCLE
InitFraction T (ellipse (0, -.236338, 0.2, 0.2))
InitFraction { start = end } Tref (ellipse (0, -.236338, 0.2, 0.2))
InitFraction T (x - 1e-9)
InitFraction { istep = 1 } Tref (x - t*y)
InitFraction T (-difference(sphere(0,0,0,0.4),sphere(0,0,0,0.1)))
InitFraction T (0.01 - (x*x + y*y + z*z))
InitFraction Te (0.01 - (x*x + y*y + z*z))
InitFraction F (R0*R0 - x*x - y*y)
InitFraction T (- ellipse (0, 0.3, 0.1, 0.1))
InitFraction T1 (- ellipse (0, 0.3, 0.1, 0.1))
InitFraction T (- ellipse (-0.2, 0., 0.05, 0.05))
InitFraction T1 (- ellipse (-0.2, 0., 0.05, 0.05))
InitFraction T (- ellipse(-0.3,0,radius,radius))
InitFraction T CIRCLE
InitFraction T CIRCLE
InitFraction T (y - 0.01*cos (2.*M_PI*x))
InitFraction T (y - 0.01*cos (2.*M_PI*x))
InitFraction T (y - 0.01*cos (2.*M_PI*x))
InitFraction {} T (y - 0.01*cos (2.*M_PI*x))
InitFraction T ({ x += 0.5; y += 0.5; return x*x + y*y - RADIUS(x,y)*RADIUS(x,y); })
InitFraction T (ellipse (0, 0, 0.2, 0.3))
InitFraction T (0.2*(1. + 0.1*sin(M_PI*x)) - y)
InitFraction T (- ellipse (0, 0, 0.3, 0.3))
InitFraction P (0.2 - acos(cos(x*M_PI/180.)*cos(y*M_PI/180.)))
InitFraction P (0.2 - acos(cos(x*M_PI/180.)*cos(y*M_PI/180.)))
InitFraction P (0.2 - acos(cos(x*M_PI/180.)*cos(y*M_PI/180.)))
InitFraction T (-y)
InitFraction T (-y)
InitFraction T (R0 - y)
InitFraction T (R0*R0 - y*y - x*x)
InitFraction T (R0*R0 - (x*x + y*y))