GfsProjectionParams
From Gerris
GfsProjectionParams can be used to tune the Poisson solver (for the MAC projection). Ideally, this should rarely be necessary.
The syntax in parameter files is:
GfsProjectionParams { tolerance = 1e-3 nrelax = 4 erelax = 1 minlevel = 0 nitermax = 100 nitermin = 1 omega = 1 function = 0 }
with
tolerance
- the maximum magnitude of the relative change in volume of any cell in one timestep (i.e. the maximum error allowed in local volume/mass conservation).
nrelax
- the number of relaxations on the finest level of the multigrid hierarchy.
erelax
- the factor by which to multiply the
nrelax
parameter when going up (i.e. coarser grids) the multigrid hierarchy. minlevel
- the coarsest level to consider in the multigrid hierarchy.
nitermax
- the maximum number of iterations of the multigrid before giving up.
nitermin
- the minimum number of multigrid iterations.
omega
- the over-relaxation parameter.
function
- whether to compute the cell-face diffusion coefficients directly from the equation of state (rather than averaging the cell-centered values).
The default values are those given in the syntax description.
Note that GfsApproxProjectionParams should usually be setup to match GfsProjectionParams.
Examples
- Collapse of a column of grains
- Estimation of the numerical viscosity
- Estimation of the numerical viscosity with refined box
- Numerical viscosity for the skew-symmetric scheme
- Numerical viscosity for the skew-symmetric scheme with refined box
- Convergence for a simple periodic problem
- Convergence for the three-way vortex merging problem
- Mass conservation with solid boundary
- Lid-driven cavity with a non-uniform metric
- Poiseuille flow
- Bagnold flow of a granular material
- Poiseuille flow with metric
- Momentum conservation for large density ratios
- Hydrostatic balance with solid boundaries and viscosity
- Hydrostatic balance with quadratic pressure profile
- Flow through a divergent channel
- Translation of an hexagon in a uniform flow
- Circular droplet in equilibrium
- Axisymmetric spherical droplet in equilibrium
- Planar capillary waves
- Air-Water capillary wave
- Fluids of different densities
- Pure gravity wave
- Non-linear geostrophic adjustment
- Poisson equation on a sphere with Gaussian forcing
- Gaussian forcing using longitude-latitude coordinates
- Rossby--Haurwitz wave
- Dielectric-dieletric planar balance
- Balance with solid boundaries
ProjectionParams { tolerance = 1e-4 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-5 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-4 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-8 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-12 }
ProjectionParams { tolerance = 1e-12 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-10 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-6 }
ProjectionParams { tolerance = 1e-9 }
ProjectionParams { tolerance = 1e-12 }
ProjectionParams { tolerance = 1e-12 }
ProjectionParams { tolerance = 1e-8 }
ProjectionParams { tolerance = 1e-7 }
ProjectionParams { tolerance = 1e-7 }