GfsBcNeumann
From Gerris
GfsBcNeumann is used to impose a Neumann boundary condition i.e. the value of the derivative normal to the boundary of a given variable. The normal vector always points toward the outside of the simulation domain.
The syntax in parameter files is
[ GfsBc ] [ GfsFunction ]
where the GfsFunction is the value of the normal derivative.
Examples
- Collapse of a column of grains
- Turbulent air flow around RV Tangaroa
- Air-water flow around a Series 60 cargo ship
- Small amplitude solitary wave interacting with a parabolic hump
- Convergence with a refined circle
- Boundary layer on a rotating disk
- Bagnold flow of a granular material
- Wind-driven lake
- Transcritical flow over a bump
- Transcritical flow with multiple layers
- Circular dam break on a sphere
- Circular dam break on a rotating sphere
- Simple example of groundwater flow following Darcy's law
- Groundwater flow with piecewise constant permeability
BcNeumann V 0
BcNeumann U 0
BcNeumann U 0
BcNeumann T 0
BcNeumann U 0
BcNeumann T 0
left = Boundary { BcNeumann U 0 }
top = Boundary { BcNeumann V 0 }
bottom = Boundary { BcNeumann V 0 }
right = Boundary { BcNeumann U 0 }
top = Boundary { BcNeumann V 0 }
bottom = Boundary { BcNeumann V 0 }
left = Boundary { BcNeumann P (- 3.*M_PI*cos(M_PI*3.*x)*sin (M_PI*3.*y)) }
right = Boundary { BcNeumann P ( 3.*M_PI*cos(M_PI*3.*x)*sin (M_PI*3.*y)) }
top = Boundary { BcNeumann P ( 3.*M_PI*cos(M_PI*3.*y)*sin (M_PI*3.*x)) }
bottom = Boundary { BcNeumann P (- 3.*M_PI*cos(M_PI*3.*y)*sin (M_PI*3.*x)) }
BcNeumann U 0
BcNeumann V 0
BcNeumann V 0
BcNeumann W 0
BcNeumann U 0
BcNeumann V 0
BcNeumann W 0
BcNeumann W 0
BcNeumann U 0
BcNeumann V 0
BcNeumann W 0
BcNeumann U 0
BcNeumann V 0
BcNeumann W 0
BcNeumann U 0
BcNeumann V 0
BcNeumann U 1.
BcNeumann U 0
BcNeumann U 0
right = Boundary { BcNeumann U 0 }
left = Boundary { BcNeumann U 0 }
top = Boundary { BcNeumann V 0 }
bottom = Boundary { BcNeumann V 0 }
right = Boundary { BcNeumann U 0 }
left = Boundary { BcNeumann U 0 }
top = Boundary { BcNeumann V 0 }
bottom = Boundary { BcNeumann V 0 }
BcNeumann V 0
BcNeumann U 0
BcNeumann V 0
BcNeumann U 0