GfsSourceCoriolis
From Gerris
As its name suggests, GfsSourceCoriolis adds a Coriolis source term to the components of the velocity or momentum. The object is further generalised and can be used to optionally add a linear friction term (which has a formally similar form to the Coriolis terms).
The syntax in parameter files is
[ GfsSourceVelocity ] [ GfsFunction ] ( [ GfsFunction ] ) ({ x = 0 y = 0 z = 1. })
where the second GfsFunction and the last brackets are optional. The first GfsFunction is the value of the Coriolis coefficient, the second GfsFunction is the value of the linear friction coefficient. The last optional parameter block defines the (x,y,z) coordinates of the rotation axis (default is 0 0 1).
For example
SourceCoriolis 1e-4 3e-3
is formally equivalent to
Source U (-1e-4*V - 3e-3*U) Source V ( 1e-4*U - 3e-3*V)
but uses a robust implicit discretisation.
Examples
- Lunar tides in Cook Strait, New Zealand
- Coriolis formulation in 3-D
- Geostrophic adjustment
- Geostrophic adjustment on a beta-plane
- Geostrophic adjustment with Saint-Venant
- Non-linear geostrophic adjustment
- Coastally-trapped waves
- Coastally-trapped waves with adaptive refinement
- Oscillations in a parabolic container
- Parabolic container with embedded solid
- Lake-at-rest balance in an inclined domain with cut cells
- Lake-at-rest balance in an inclined domain with bipolar metric
- Circular dam break on a rotating sphere
- Rossby--Haurwitz wave
- Rossby--Haurwitz wave with a free surface
- Rossby--Haurwitz wave with Saint-Venant
- Simple example of groundwater flow following Darcy's law
- Groundwater flow with piecewise constant permeability
SourceCoriolis -1e-4
SourceCoriolis (2.*Omega) 0. { x = 0. y = 1. z = 1. }
SourceCoriolis F0
SourceCoriolis (1. + 0.156246961595*(y + 0.5))
SourceCoriolis F0
SourceCoriolis 2.*OMEGA
SourceCoriolis {} 1.
SourceCoriolis {} 1.
SourceCoriolis 0 tau
SourceCoriolis 0 tau
SourceCoriolis 0 1.0e-01
SourceCoriolis 0 1.0e-01
SourceCoriolis 10.*sin(y*M_PI/180.)
SourceCoriolis 2.*Omega*sin(y*DTR)
SourceCoriolis 2.*Omega*sin(y*DTR)
SourceCoriolis 2.*Omega*sin(y*DTR)
SourceCoriolis 0 1
SourceCoriolis 0 1