Define RHOR 1000.0
Define MUR 100.0
Define Ar 1.0
Define Bo 5.0
Define WIDTH 6.0
Define MINLEVEL 4
Define MIDLEVEL (MINLEVEL+2)
Define MAXLEVEL (MIDLEVEL+2)
Define VAR(T,min,max) (min + CLAMP(T,0,1)*(max-min))
Define RHO(T) VAR(T,1.0,1.0/RHOR)
Define MUHARM(T) 1.0/VAR(T,1.0,MUR)
Define MAXTIME 10.0
2 1 GfsAxi GfsBox GfsGEdge { x = -.25 } {
Time { end = MAXTIME }
PhysicalParams { L = WIDTH }
Refine 6
GModule hypre
VariableTracerVOFHeight T
VariableFiltered T1 T 1
VariableCurvature K T Kmax
InitFraction T ( -(x*x)-(y*y)+(.25) )
PhysicalParams { alpha = 1.0/RHO(T1) }
Source {} U -1.0
SourceViscosity MUHARM(T1)/Ar
SourceTension T 1.0/Bo K
AdaptGradient { istep = 1 } {
maxlevel = MAXLEVEL
minlevel = MINLEVEL
cmax = 1e-2
} T1
AdaptVorticity { istep = 1 } {
maxlevel = MIDLEVEL
minlevel = MINLEVEL
cmax = 1e-2
cfactor = 1
}
EventBalance { istep = 10 } 0.1
OutputProjectionStats { istep = 10 } stderr
OutputDiffusionStats { istep = 10 } stderr
OutputBalance { istep = 10 } stderr
OutputTime { istep = 10 } stderr
SpatialSum { step = .1 } bubble_volume T
OutputScalarSum { step = .1 } {
awk '{
if (NR == 1) {
## analytical solution (terminal velocity)
uex = (1.0+MUR)/(1.0+2.0*MUR/3.0);
uex *= (Ar/18.0)*(1.0-1.0/RHOR)
print $3, $5, 0.0, uex;
}
else {
print (t+$3)/2., $5, ($5-x)/($3-t), uex;
}
t = $3; x = $5;
fflush(stdout)
}' > xv
} { v = x*T/bubble_volume }
OutputSimulation { istep = 10 } stdout
GfsEventScript { start = end } {
gnuplot <<- EOF
set key bottom right
set xlabel "time"
set ylabel "velocity"
set term postscript eps lw 3 solid 20 colour
set output "vel.eps"
plot 'xv' u 1:3 title "computed", \
'' u 1:4 w l title "Hadamard-Rybczynski"
EOF
}
}
GfsBox { bottom = Boundary }
GfsBox { bottom = Boundary }
1 2 right