GfsAdaptError
From Gerris
GfsAdaptError uses an a posteriori error estimate of a given field as a cost function for adaptation. The error is estimated by computing the norm of the Hessian matrix of the given field, estimated using third-order-accurate discretisation operators.
The syntax in parameter files is:
[ GfsAdaptGradient ]
The cmax
value of the corresponding GfsAdapt is the maximum acceptable estimated error.
Examples
- Viscous folding of a fluid interface
- Forced isotropic turbulence in a triply-periodic box
- The 2004 Indian Ocean tsunami
- Cyclone-generated wave field
- Time-reversed advection of a VOF concentration
- Equilibrium of a droplet suspended in an electric field
AdaptError { istep = 1 } { cmax = 1e-2 maxlevel = max_level } U
AdaptError { istep = 1 } { cmax = 1e-2 maxlevel = max_level } V
AdaptError { istep = 1 } { cmax = 5e-2 maxlevel = 7 } U/Unbar
AdaptError { istep = 1 } { cmax = 5e-2 maxlevel = 7 } V/Unbar
AdaptError { istep = 1 } { cmax = 5e-2 maxlevel = 7 } W/Unbar
AdaptError { istep = 1 } {
cmax = 0.05
minlevel = 5 maxlevel = LEVEL
} Pmax
AdaptError { istep = 1 } { cmax = 0.1 minlevel = 4 maxlevel = LEVEL c = Hse } Hs
AdaptError { istep = 1 } {
cmax = 0.2 minlevel = 4 maxlevel = LEVEL c = Ve
} sqrt(U10*U10 + V10*V10)
AdaptError { istart = 1 istep = 1 } { cmax = 1e-3 maxlevel = LEVEL } C
AdaptError { istart = 1 istep = 1 } { cmax = 1e-3 maxlevel = LEVEL } G
AdaptError { istep = 1 } { cmax = 2e-4 maxlevel = 7 } U
AdaptError { istep = 1 } { cmax = 2e-4 maxlevel = 7 } V