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Abstract

In the present study we propose a charge-conservative scheme to solve two-
phase electrohydrodynamic (EHD) problems using the Volume-of-Fluid (VOF)
method. EHD problems are usually simplified by assuming that the fluids
involved are purely dielectric (insulators) or purely conducting. Gases can
be considered as perfect insulators but pure dielectric liquids do not exist in
nature and insulating liquids have to be approximated using the “Taylor–
Melcher leaky dielectric model” [1, 2] in which a leakage of charge through
the liquid due to ohmic conduction is allowed. It is also a customary as-
sumption to neglect the convection of charge against the ohmic conduction.
The scheme proposed in this article can deal with any EHD problem since
it does not rely on any of the above simplifications. An unrestricted EHD
solver requires not only to incorporate electric forces in the Navier-Stokes
equations, but also to consider the charge migration due to both conduction
and convection in the electric charge conservation equation [3]. The conduct-
ing or insulating nature of the fluids arise on their own as a result of their
electric and fluid mechanical properties. The EHD solver has been built as an
extension to Gerris, a Free Software solver for the solution of incompressible
fluid motion using an adaptive VOF method on octree meshes developed by
Popinet [4, 5].
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1. Introduction

Electrohydrodynamics (EHD) describes the motion of liquids subjected
to electric fields. Typically the liquid will be set in motion by electrical
stresses, thereby modifying the geometry and charge distribution, which in
turn modifies the electric field. Under the influence of an electric field two
effects occur in a fluid: the fluid molecules may get polarized, giving rise to
dipoles, and an ohmic migration of charged ions/free electrons through the
fluid is induced. This leads to two distinct limits in the electrical behavior of
a fluid: perfect dielectric and perfect conductor. A perfect dielectric fluid is a
fluid without any ion or free-electron, only polarization effects being present.
If polarization effects are homogeneous, electrical forces only appear at the
fluid interface, where dipoles are unbalanced, and act in the normal direction.
Apolar liquids such a benzene are considered dielectric fluids, however most
liquids are known for their ability to dissolve impurities by creating ionic
pairs, and could hardly be considered perfect dielectric fluids. Therefore
these fluids have to be considered to some extent as conducting [1, 2]. Perfect
conductors are those where the conductivity is high enough to consider the
ohmic conduction as the only agent causing charge transport. In this limit
it is assumed that the free charges migrate instantaneously from the bulk to
the fluid interface, which becomes an electric equipotential surface. Leaky
dielectrics are different because a tangential electrical stress appears at the
interface, setting the fluid in motion until viscous stresses provide balance.
Saville [3] used a scaling analysis to rigorously derive the Taylor-Melcher
leaky dielectric model while identifying the approximations made. Note that
Saville retains the temporal term and the convection of charges term in the
charge conservation equation, as well as the electrical body force terms that
Melcher and Taylor ignored.

Electric forces may be used to control and handle fluids in several ways.
For example, many technical and industrial processes which require supplying
liquids in the form of small droplets, such as ink jet printing, fuel atomiza-
tion, or many biotechnological applications, involve the breakup of charged
jets [6, 7, 8], which is referred to as EHD liquid spraying. Another substantial
application area is based on the inducement of a fluid bulk motion by charge
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injection from metallic tip or blades [9, 10]. A subject of increasing impor-
tance is the design and characterization of microfluidic devices [11]. Many
basic operations that occur in these devices such as generation, transloca-
tion, merging or fission of droplets are carried out by a careful manipulation
of electric fields [12, 13, 14].

The solution of the Navier-Stokes equations with a free surface or interface
is not an easy task; this is complicated further when electrostatic effects
are coupled to the fluid dynamics. Thus most EHD problems have been
addressed experimentally [15, 16] or with simplified theoretical models [17,
18].

Numerical approaches are sometimes the only available option for simu-
lating complex interdisciplinary phenomena occurring in complex geometries.
The preferred numerical scheme in these simulations is the Boundary Ele-
ment Method (BEM), which is used to solve either the electric field or the
flow pattern [19, 20, 21, 22]. However the BEM method is only applicable to
the solution of problems in the limit of inviscid or Stokes flows. Finite ele-
ment methods (FEM) have been used in the study of the breakup of charged
jets [23] or pendant droplets formation in electric fields [24]. Several meth-
ods can be used to describe the moving interface: in tracking methods a set
of marker points is used to locate the interface; level-set methods describe
the interfacial geometry through an implicit function of the distance to the
interface; and Volume-Of-Fluid methods (VOF) use a volume fraction field.
In Fernández et al. [25] the front-tracking method is extended to account
for electric fields and applied to evaluate droplet distribution in a channel.
The level-set method has been adapted to EHD problems in Teigen and
Munkejord [26]. In this work very accurate results are obtained by treating
the discontinuities with a ghost-fluid method, but the model is restricted to
perfect dielectric fluids.

Tomar et al. [27] proposed a different, and very accurate, methodology for
computing electrical forces; since in most situations the only electrical forces
are located at the free interface, they make use of the Continuum-Surface-
Force (CSF) approach devised by Brackbill [28] to model interfacial electric
stresses. Unfortunately this approach is only applicable if both fluids behave
as perfect dielectrics or perfect conductors.

Commercial codes such as Fluent, Flow3D or CFX 4.4 are experiencing a
growing use as tools for scientific studies. These codes provide models to sim-
ulate the Navier-Stokes equations but have to be extended and adapted, with
more or less flexibility, for multidisciplinary subjects, among them EHD prob-
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lems. Zeng and Korsmeyer [11] extended Flow3D to simulate droplet-based
labs-on-a-chip, while Sen et al. [29] used Flow3D to analyze electrospray ion-
ization and Lastow and Balachandran [30] adapted CFX 4.4 to study EHD
atomization. In general details like the implementation or convergence of the
numerical treatment of the EHD extension with these commercial codes are
not available leaving to their users the responsibility of a reliable validation
of the computed results.

The present work proposes a conservative approach to deal with two-
phase EHD problems using the VOF method. The proposed method does
not require any simplifications of the electrical behavior of the fluids involved.
An unrestricted EHD problem requires not only to incorporate electric forces
into the Navier-Stokes equation, but also to consider the charge migration due
to both conduction and convection. The EHD code has been built as an ex-
tension of the Gerris solver [4, 31]. Gerris combines an adaptive quad/octree
spatial discretisation with a VOF approach to solve incompressible two-phase
fluid motions. Gerris can accurately simulate surface-tension-driven flows us-
ing a combination of balanced-force CSF and a height-function estimation of
the curvature of the interface [5].

The present paper is organized as follows. In section 2 the complete EHD
equations are developed. The numerical methodology used is described in
section 3, paying special attention to the numerical treatment of the electric
forces and the charge continuity equation. The proposed model is tested
in section 4 using analytical problems and finally the main conclusions are
presented in section 5.

2. Governing Equations

The set of equations governing the incompressible fluid motion are the
continuity and momentum equations,

∇ · u = 0, (1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · Tv + Fe + σκδsn (2)

where ρ is the fluid density, u is the velocity vector, σ the surface tension
coefficient, κ the interface curvature and n the normal to the interface. The
surface tension term only acts on the interface. This is represented using the
Dirac distribution function δs. Tv is the viscous stress tensor given by,

Tv = 2µD , (3)
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where µ is viscosity and D is the deformation tensor, D = 1
2
(∇u+∇uT ). Fe

stands for the volume electric forces. To compute Fe, Maxwell’s electromag-
netic equations need to be considered. In electrohydrodynamic flows, the
magnetic effects can be ignored and the electrostatic equations are an ac-
curate approximation since, as pointed out by Saville [3], the characteristic
time for the magnetic phenomena tm ∼ µMKℓ2 (µM is the magnetic perme-
ability, K is the conductivity and ℓ the characteristic length) is several orders
of magnitude smaller than the characteristic time for electric phenomena i.e.
the electric relaxation time te ∼ ε/K, where ε is the electric permittivity.1

Accordingly the electrical phenomena are described by:

∇ · (εE) = ρe and ∇× E = 0 (4)

where ρe is the volumetric charge density and E the electric field. In terms of
the electric potential, ϕ, the electrostatic limit follows the Poisson equation,

∇ · (ε∇ϕ) = −ρe (5)

Finally, the conservation equation of the bulk free charge should be imposed,

∂ρe
∂t

+∇ · J = 0 (6)

where J is the vector current density (flux of electric charge) given by

J = KE+ ρeu . (7)

The first term is the ohmic charge conduction while the second is due to the
convection of charges. Taking into account the electrostatic relationship (4)
the conduction term can be further developed and Eq. (6) can be written as

∂ρe
∂t

+∇ · (ρeu) = −K

ε
ρe + E ·

(
K

ε
∇ε−∇K

)
(8)

If the electrical properties of the fluid K and ε are homogeneous, this reduces
to

∂ρe
∂t

+∇ · (ρeu) = −K

ε
ρe (9)

1For deionized water µM ∼ 10−6 H/m, ε ∼ 10−11 F/m and K ∼ 10−6 S/m, gives for
a millimetric scale ℓ ∼ 10−3 m: tm/te ∼ 10−13.
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The volumetric electric forces in the bulk Fe can be derived from the
electrostatic Maxwell stress tensor

Te = ε

(
EE− E2

2
I

)
(10)

by applying the divergence operator

Fe = ∇ · Te = ρeE− 1

2
E2∇ε. (11)

The first term represents the electric forces exerted on the free charges seeded
in the fluid, while the second term represents the electric forces exerted on
the electric dipoles induced in dielectric mediums.

In two-phase flows an interface separates the non-miscible fluids (the me-
dia 1 and 2 as sketched in figure 1). The interface is free to move, its position
being given by the equation F (x, t) = 0. We denote the normal and the tan-
gent vectors to the free surface by n and t (for the sake of simplicity we adopt
a bi-dimensional description where a single tangential vector is considered).
The evolution of the interface is governed by the kinematic condition

∂F

∂t
+ u · ∇F = 0 . (12)

Some quantities are continuous through the interface such as the velocity,
the electric potential ∥ϕ∥ = 0 , and the tangential component of the electric
field Et = E · t, ∥Et∥ = 0 where ∥ ∥ denotes the jump across the interface.
Note that the continuity of the tangential component of the electric field is
a consequence of the continuity of the electric potential. Therefore imposing
both conditions is redundant.

The stress balance at the interface should be satisfied in the tangential
direction

t · ∥Tv∥ · n+ t · ∥Te∥ · n = 0 (13)

and in the normal direction

∥p∥+ n · ∥Tv∥ · n+ n · ∥Te∥ · n = σκ. (14)

The pressure is not continuous through the interface due to surface tension
and the normal electrical stresses acting on the interface. The normal electric
field En = E · n is also discontinuous through the interface

∥εEn∥ = q (15)
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Figure 1: Sketch of the fluid-fluid interface.

with q the free charge per unit area accumulated at the interface.
The expressions of the electrical tangential and normal stresses acting on

the interface are respectively

t · ∥Te∥ · n = (ε1En1 − ε2En2)Et = q Et (16)

and

n · ∥Te∥ · n =
1

2

[
ε1E

2
n1 − ε2E

2
n2 − (ε1 − ε2)E

2
t

]
(17)

where the continuity of Et has been used.
Finally a conservation equation for the surface electrical charge density q

should be satisfied

∂q

∂t
+ u · ∇sq − qn · (n · ∇) · u+ ∥KEn∥ = 0 (18)

where ∇s denotes the surface divergence. This equation reflects how the
surface charge density evolves in time due to surface charge convection (sec-
ond term), the dilation of the interface (third term) and the net charge
added/withdrawn from the bulk by ohmic conduction (fourth term).

Depending on the conductivities and permittivities of the fluids several
limits can be distinguished. If both fluids are dielectric the ohmic conduction
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is absent (K1 = K2 = 0) and the fluid is free of charges (ρe = 0). Under
these conditions the equation for the potential (5) reduces to the Laplace
equation and the electric forces are acting only at the interface in the normal
direction, see Eq. (16). Another limit is observed when both fluids are
perfect conductors. This limit is reached when the electric relaxation time
te of both fluids is much shorter than the characteristic hydrodynamic time
th which depends on the problem considered; for example in slightly viscous
capillary droplets and jets th is the capillary time given by (ρD3/σ)1/2 where
D is the diameter; in other problems th is the residence time ℓ/Uo or the
viscous time (ρℓ2/µ). The much shorter time scale for electric phenomena
leads to an essentially instantaneous charge migration through the fluid so
that the fluid bulk becomes free of charges (ρe = 0). In this limit, Eq. (5)
reduces to the Laplace equation. Eq. (18) is approximated by ∥KEn∥ = 0
and the electric forces are acting only at the interface.

If one fluid is a perfect conductor and the other is dielectric the relaxed
electric charge accumulates at the free surface. The electric field in the
conducting domain is negligible compared to the dielectric field, the free
surface can then be assumed equipotential and there is no electrical tangential
stress on the interface.

In a general case, electric relaxation and hydrodynamic times would be of
the same order, te ∼ th, and the terms for charge migration, convection and
conduction, would be comparable in Eqs. (6) and (18). For example, using
the fluid properties for deionized water (ε = 80 εo; εo = 8.85 10−12 F/m ;
K = 10−5 S/m ; ρ = 103 Kgm−3 and µ = 10−3Pa s), we get te/th ∼ 7 10−5

at the millimetric scale (ℓ = 10−3m) but if the length scale of the problem,
ℓ, is 10−5 m (microfluidics), one would obtain te/th ∼ 1.

3. Numerical scheme

Gerris is an open-source solver for the solution of incompressible fluid
motion using the finite-volume approach. It was developed by Popinet [4, 5].
Gerris uses the Volume-of-Fluid (VOF) method to deal with two-phase flows.
In this method the Navier-Stokes equations are written as

∇ · u = 0
ρ
(
∂u
∂t

+ u · ∇u
)
= −∇p+∇ · (2µD) + σκδsn+ Fe
∂c
∂t

+∇ · (cu) = 0
ρ = cρ1 + (1− c)ρ2
µ = cµ1 + (1− c)µ2

(19)
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where a variable c has been added which enables tracking of the interface
position; this is the volume fraction, c(x, t). The surface tension stress is
modeled as a fluid bulk volumetric force using the Continuum-Surface-Force
(CSF) approach of Brackbill [28]. This method can suffer from parasitic
currents which are avoided using a balanced-force description of the surface
tension and pressure gradient together with an accurate curvature estimate
[5].

Gerris makes use of a staggered-in-time discretisation, which is second-
order accurate, combined with a time-splitting projection method. Combined
with the discretisation of the electric field equation and the charge evolution
equation this gives the following timestepping scheme

cn+ 1
2
− cn− 1

2

∆t
+∇ · (cnun) = 0 (20)

(ρe)n+ 1
2
− (ρe)n− 1

2

∆t
+∇ · [(ρe)nun +Kn− 1

2
En− 1

2
] = 0 , (21)

∇ · [∇(εn+1/2Φn+1/2)] = −(ρe)n+1/2 . (22)

ρn+ 1
2

(
u∗ − un

∆t
+ un+ 1

2
· ∇un+ 1

2

)
= ∇ · (µn+ 1

2
(Dn +D∗))

+(σκδsn)n+ 1
2
+ (Fe)n+ 1

2
, (23)

un+1 = u∗ −
∆t

ρn+ 1
2

∇pn+ 1
2

(24)

∇ · un+1 = 0 , (25)

where the * subscript indicates that the value of the corresponding variable
is provisional.

Combining equations (24) and (25) of the above set results in the following
Poisson equation

∇ ·

(
∆t

ρn+ 1
2

∇pn+ 1
2

)
= ∇ · u∗ . (26)

The momentum equation (23) can be reorganized as

ρn+ 1
2

∆t
u∗ −∇ · (µn+ 1

2
D∗) =

∇ · (µn+ 1
2
Dn) + (σκδsn)n+ 1

2
+ (Fe)n+ 1

2
+ ρn+ 1

2

[un

δt
− un+ 1

2
· ∇un+ 1

2

]
(27)
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where the velocity advection term un+ 1
2
· ∇un+ 1

2
is estimated by means of

the Bell–Colella–Glaz second-order unsplit upwind scheme [4, 32].
Space is discretised using an octree where the unknown variables are

located at the center of each cubic discretisation volume and are interpreted
as the average value of the variable in the cell. The octree discretisation used
in Gerris allows an efficient mesh refinement or coarsening. The mesh can
be adapted at every time-step on demand with a minimal impact on overall
performance.

In the above equations the spatial values of the electrical properties fol-
lows from the volume fraction c. Similarly to the fluid properties ρ and
µ, the electric properties can be interpolated using the weighted arithmetic
mean interpolation (WAM) that writes

ε = cε1 + (1− c)ε2 and K = cK1 + (1− c)K2 (28)

Tomar et al. [27] obtained much more accurate results using the weighted
harmonic mean interpolation (WHM) given by

1

ε
=

c

ε1
+

(1− c)

ε2
and

1

K
=

c

K1

+
(1− c)

K2

(29)

Tomar et al. [27] analyzed the influence of the interpolation scheme ap-
plied to the permittivity since it is the only relevant property in their work. In
the proposed scheme we investigate the influence of the interpolation scheme
when applied to both electrical properties, the permittivity and the conduc-
tivity, using the following combinations: (a) both ε and K uses WAM, (b) ε
uses WHM and K uses WAM and (c) both ε and K uses WHM.

The numerical procedure for a timestep is as follows:

1. Cell centered volume fraction at the intermediate timestep ccn+1/2 are

calculated from Eq. (20) using a VOF scheme.

2. Charge density at the intermediate timestep, (ρe)
c
n+1/2, is then calcu-

lated from Eq. (21) where the advection term is estimated with the
Bell–Colella–Glaz second-order unsplit upwind scheme.

3. The electric potential at instant n+1/2, ϕn+1/2, is calculated by solving
the electric potential Poisson Eq. (22). The efficient octree multilevel
Poisson solver described in Popinet [4] is reused. The electric field is
then straightforwardly computed as En+1/2 = −∇ϕn+1/2.

4. The electric body force (Fe)n+1/2 is computed from En+1/2.
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5. The auxiliary cell-centered velocity uc
∗ is calculated from the Helmholtz-

type equation (27) using a variant of the multilevel Poisson solver.

6. The pressure at time n+1/2 is computed by solving the Poisson equa-
tion (26) with the multilevel solver.

7. The cell-centered velocity field un+1 is computed using a cell-centered
approximation of equation (24).

We refer the reader to Popinet [4, 5] (and references cited therein) for a more
detailed presentation of the quad/octree data structure and the numerical
integration procedure of the incompressible Navier-Stokes scheme.

3.1. Finite-volume approximation of the electrical forces Fe

The volume-averaged electrical forces at step n + 1/2 can be written in
each discretised cell C as∫

C
(Fe)n+1/2 =

∫
C
(∇ · Te)n+1/2 =

∫
C

[
(ρe)n+1/2En+1/2 −

1

2
(E2)n+1/2∇εn+1/2

]
(30)

or simply

(Fe)n+1/2 = (ρe)n+1/2En+1/2 −
1

2
(E2)n+1/2∇εn+1/2 . (31)

The above equation applies either in cells fully immersed in the bulk (volume
fraction c = 1 or c = 0) or in cells crossed by the interface (0 < c <
1). In the most usual situations, such as the limit cases described in the
previous section, (Fe)n+1/2 would only be different from zero in cells crossed
by the interface. In interfacial cells Eq. (31) should be able to describe the
dynamical effects of the interfacial electrical stresses given by Eqs. (16) and
(17). Note that in an interfacial cell either the electric field or the permittivity
suffers very abrupt changes. An accurate evaluation of (Fe)n+1/2 by means
of Eq. (31) will then be difficult since it would require very accurate center
values of the terms involved, i.e ∇ε, (E2),... This numerical inconvenience is
more evident if the mesh is refined. Note also that Eq. (11) (the continuum
version of Eq. (31)) is broadly used in previous works, such as those extending
commercial codes to deal with EHD problems [33, 30].

Tomar et al. [27] show that a suitable CSF treatment of the electric
field force gives good results for electrohydrodynamic problems in the limit
cases of dielectric–dielectric and conducting–conducting fluids. So far a CSF

11



treatment for the general case is not available since this approach relies on
rewriting Eq. (17) in these two limits.

Here we propose a general conservative approach to calculate (Fe)n+1/2.
Using Gauss’ theorem we get∫

C
(Fe)n+1/2 =

∫
C
∇ · (Te)n+1/2 =

∫
∂C
(Te)n+1/2 · n ⇒

h(Fe)n+1/2 =
∑
f

εfn+1/2

(
Ef

n+1/2E
f
n+1/2 −

(E2)fn+1/2

2
nf

) (32)

where h is the cell size, Ef
n+1/2 is the component of the electric field normal

to the cell face (evaluated at the cell face) and nf is the normal unit vector
at the face.

Computing the volumetric electric forces in a cell C as the resultant of
electrical stresses acting at the cell face ∂C provides a formally exact and
numerically conservative calculation of the electrical stresses acting at an
interface; any remaining inaccuracy can be ascribed to the discrete character
inherent to any numerical scheme.

3.2. Finite volume approximation of the ohmic conduction term

In a similar spirit, we compute the ohmic conduction term of the discrete
equation (21) through the values of variables located at the cell faces ∂C as

h
[
∇ · (Kn−1/2En−1/2)

]
=

∫
C
∇ · (Kn−1/2En−1/2)

=

∫
δC
(Kn−1/2En−1/2) · n =

∑
f

Kf
n−1/2E

f
n−1/2 .

(33)

This formulation ensures numerical conservation of the charge density.
The charge conservation equation in the form given by expression (9)

has sometimes been used to model two-phase EHD problems [34] despite
not being valid uniformly in the domain. Indeed, close to the interface the
electric properties undergo a steep jump and the additional terms of expres-
sion (8) should be included. For the sake of comparison, we have also made
simulations using the form (9), for which the staggered time discretisation
reads

(ρe)n+1/2 − (ρe)n−1/2

∆t
+∇ · [(ρe)nun] = −

Kn−1/2

εn−1/2

(ρe)n−1/2 . (34)
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Test case ϕex
1 Eex

1 ϕex
2 Eex

2 ∆pex

dielectric-dielectric −2y+β
1+β

2
1+β

β(−2y+1)
1+β

2β
(1+β) −2β(β−1)

(1+β)2

conducting-conducting −2y+η
1+η

2
1+η

η(−2y+1)
1+η

2η
1+η −2(η2−β)

(1+η)2

dielectric-conducting 1 0 −2y + 1 2 -2

Table 1: Analytical dimensionless solutions for the planar test cases. Potentials in medium
1 and 2, ϕ1 and ϕ2, have been scaled with V , the length with L and the pressure jump
with ε2V

2/L2. β and η are the ratios of permittivities, ε1/ε2, and conductivities, K1/K2,
respectively.

4. Results and discussion

In this section we investigate the performance of the different schemes
presented in the present study. The planar test cases allow us to show that:
(a) the proposed approach gives accurate results irrespective of the electri-
cal behavior of the fluids involved, (b) the electric forces are much more
accurately calculated using scheme (32) than using (31). Subsection 4.2 is
devoted to assess the superior accuracy of scheme (21) for two-phase flows,
contrasting it to scheme (34). Finally, in subsection 4.3 we show the applica-
bility of the scheme to three-dimensional problems and we test the proposed
scheme against a realistic EHD problem: the deformation of a droplet by an
electric field.

4.1. Planar layers

A potential V is imposed between two parallel electrodes at a distance
L. The gap between the electrodes is completely filled with two layers of
different fluids having homogeneous electric properties as shown in figure
2.a. In this setup the problem is uni-dimensional and the electric potential
decreases linearly along y, although generally at a different rate in each layer.

As test cases we use the following limits: dielectric-dielectric (K1=K2=0),
conducting-conducting and dielectric-conducting (K2=0). In the cases where
a conducting medium is present, we allow the electrostatics to evolve to a
steady state from a starting initial condition (set as ρe(x, t = 0) = 0), the
electric forces being neglected in the transient stage. Once the steady state
is reached, the pressure jump is calculated and compared to the exact value
given by

∆pex = p1 − p2 = −1

2

[
(Eex

2 )2 − β(Eex
1 )2

]
(35)
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Figure 2: Sketch of the geometry and electrical conditions used in: (a) the planar test
cases, (b) the isolated conducting cylinder test case.

In table 1 we summarize the analytical expressions for the electric potential
and electric field in each medium, as well as the pressure jump. The electric
potential has been made dimensionless with V , the length with L and the
pressure jump with ε2V

2/L2. β and η are the ratio of permittivities, ε1/ε2,
and conductivities, K1/K2, respectively. For the numerical test the free
parameters have been set to the following values: dielectric-dielectric, β = 3,
conducting-conducting, β = 2 and η = 3.

Table 2 shows the convergence of electric fields in medium 1 and 2, 1 −
E1/E

ex
1 and 1−E2/E

ex
2 , respectively, and pressure jumps using the schemes

given by Eq.(32) and Eq.(31) for the different test cases. The results shown
in table 2 have been computed using the WAM interpolation for the electric
properties. As can be seen, using Eq.(31) gives rise to very large errors in the
pressure jump, increasingly so as the grid is refined. These large errors have
their origin in the steep electric permittivity gradient across the interface,
which leads to an inaccurate estimate of the term −1

2
(E2)n+1/2∇εn+1/2 at

the center of interfacial cells. In contrast, the proposed scheme of Eq.(32)
provides accurate results for every test case, converging to exact values as
the grid is refined. Note that the error halves as the grid mesh doubles in
accordance to a first-order in space convergence. The error in the pressure
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error (%) error (%) error (%)
Grid (1−∆p/∆pex) (1− E2/E

ex
2 ) (1− E1/E

ex
1 )

Eq.(32) Eq.(31)

dielectric-dielectric
32 1.589 3489 0.796 0.787
64 0.816 7022 0.392 0.392
128 0.376 14033 0.196 0.196

conducting-conducting
32 1.588 3295 0.787 0.787
64 0.783 6638 0.392 0.392
128 0.377 13323 0.196 0.196

dielectric-conducting
32 6.571 3735.8 3.229 -
64 3.204 7328.9 1.591 -
128 1.591 14520.8 0.791 -

Table 2: Deviations from theoretical values of the computed pressure jump and electric
field using the approach given by Eq. (32) and (31), for different test cases and spatial
resolutions. The electric properties have been interpolated using the WAM scheme.

jump (second column in table 2) is practically the sum of the error in the
computed electric field in each medium (sum of third and fourth column).
This reflects the fact that Eq.(32) allows a conservative calculation of the
electrical stresses acting on every cell in the computational domain regardless
of whether the cells are interfacial or not; the only prerequisite is an accurate
evaluation of the electric field. Welch and Biswas [35] also conclude that the
electric forces are much more accurate when computed using the conservative
divergence form.

We have also investigated the influence of the interpolation scheme ap-
plied to the electrical properties in these planar test cases. Our results are
in accordance with those reported by Tomar et al. [27]. For the dielectric-
dielectric limit, using the WHM interpolation for the permittivity we obtain
the exact values for both the electric field and the pressure jump irrespective
of the grid adopted (32, 64 or 128 points). Exact values are also computed
irrespective of the grid in the conducting-conducting limit when the WHM
interpolation is applied to both the electrical properties. Note however that
if WAM is used for the conductivity (keeping WHM for the permittivity), the
accuracy of the calculations reduces to the values shown in table 2. Finally,
in the dielectric-conducting configuration, the use of WHM for both prop-

15



erties does not lead to exact values but to roughly half the errors reported
in table 2, i.e. the errors with a grid of 32 points and WHM interpolation
are similar to those using a grid of 64 points and WAM. However, it can
not be concluded that in general the WHM interpolation is better than the
WAM interpolation. In fact, for a more complicated and realistic problem
(see section 4.3; in particular Fig. 7) we have obtained an accuracy similar
for both interpolation schemes (with a slight increase in charge diffusion near
the interface when using WHM compared to WAM). Thus, in the following
we will use WAM except where indicated.

An interesting issue we have found is that the electric force, regardless of
the accuracy reached in its computation, can induce spurious numerical fluid
currents. This is similar to what happens for naive implementations of CSF
schemes for surface tension. We have been able to eliminate these spurious
currents in the particular case of the planar dielectric-dielectric configuration
by imposing a balanced-force description of the electric stresses similar to the
one applied by Popinet [5] for surface tension. Generalising this balanced
scheme to general interface configurations and electrical properties is non-
trivial however and will be the subject of future work.

4.2. Time relaxation of a charge density distribution

In this subsection we compare the accuracy of the numerical scheme given
by Eq. (21) with the scheme based on Eq. (34); both are used to simulate
the time evolution of the charge density.

4.2.1. Bulk relaxation

In this test case, a concentrated bump of charge density, initially set at
the center of a square domain of width L, is allowed to relax freely in time.
The entire domain is occupied by a single fluid, at rest, whose electrical
properties are K and ε, the electrical boundary condition being set at the
border of the domain, ϕ = 0. The initial shape of the bump is a Gaussian
bell given by equation

ρe(x, t = 0) =
e−r2/(2a2)

a
√
2π

, (36)

where r2 = x2 + y2 and a is a free parameter setting the width and height of
the bell. If the domain borders are far enough from the concentrated charge
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Figure 3: Isocontours of potential (red lines) at instant t = 0 and corresponding spatial
discretisation. The isoncontour range is ϕ = 0− 0.02 with ∆ϕ = 0.002 intervals.

bump, a ≪ L, the problem has a simple analytical solution given by an
exponential time decay of the bump

ρe(x, t) = ρe(x, t = 0) e−Kt/ε . (37)

Figure 4 illustrates the accuracy of the proposed EHD charge density
model. In addition this test also shows that the mesh refinement capabilities
of the octree spatial discretisation of Gerris are maintained when solving the
EHD equations (see figure 3). A static mesh is used where cells contained
within a circle of radius 0.19 centered on the origin have a level L = 7 (cell
size h = 2−L), the cells then coarsen gradually away from the origin until a
level of L = 4 is reached for cells at the boundaries of the domain.

In this particular test, the free parameters of the problem have been
chosen as follows: L = 1, a = 0.05, ε = 2 and K = 1. Not surprisingly,
since there is a single medium, the same numerical performance is obtained
regardless of whether the surface charge density equation is modeled with
Eq. (21) or with Eq. (34), as shown in figure 4. In the upper plot we show
that the numerical simulation reproduces the exponential temporal decay
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The parameters used in the analysis are L = 1, a = 0.05, ε = 2 and K = 1. Upper plot:
Time decay of the peak charge density, ρmax
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results with Eq. (21) and � symbols show simulation results with (34). Lower plot:
Spatial distribution of charge density along the x axis. Times equal to 0, 2, 4 and 6 are
shown. The continuous line is the analytical solution and o symbols indicate the simulation
results.
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of the charge density at a given point. The selected point is the center of
the square domain (x = 0, y = 0) where the maximum is located. In the
lower plot we illustrate the decay of the Gaussian bump, whose geometry is
preserved, with time (t = 0, 2, 4 and 6).

4.2.2. Charge relaxation of an isolated conducting cylinder

A conducting cylinder of radius R and electrical properties K1 and ε1 is
located at the center of a square domain of width L. The region between
the cylinder and the square borders is filled with a second isolating medium
(K2 = 0) of electrical permittivity ε2. Initially, a uniform charge distribution
ρeo is set in the cylinder, the total charge per unit length of the cylinder being
Q = πR2ρeo. As time proceeds, the seeded charges repel each other, leading
to accumulation of the free charge at the surface of the cylinder. Notice,
however, that the global amount of charge in the cylinder, Q, should remain
unchanged. The electric potential distribution in the dielectric medium re-
mains unaltered with time since it depends only on Q. An analytic solution
of the steady state is provided if the dielectric medium is assumed unbounded

E(r) =

{
Q

2πε2
1
r

for r ≥ R

0 for r < R
(38)

In figure 5 we explore the accuracy of modeling the charge density equa-
tion with Eq. (21) and with Eq. (34) in a two-phase situation, using as
benchmark the charge relaxation of an isolated conducting cylinder. The
free parameters of the case are set to the following quantities: R = 0.05,
L = 1, K1 = 3, ε1 = 3, ε = 2 and ρeo = 0.5. In the upper plot we depict
the time evolution of the total amount of charge in the domain, scaled with
the initial amount of charge Q. It can be observed that the scheme based
on Eq. (34) fails to conserve the total charge in the domain, in contrast
with the accurate conservation behavior of the scheme based on Eq. (21).
In the lower plot of figure 5 we show the spatial distribution of the electric
field once the steady state is reached for different levels of mesh refinement.
User-defined criteria can easily be used to adapt the mesh within Gerris. We
have adopted a gradient criterion given by |∇c|h < ϵ, where c can be any of
the variables. Gradient adaptivity allows to use high resolution in regions of
large gradients. We chose to apply gradient adaptivity to the volume fraction
to ensure a good description of the variables in the vicinity of the interface.
The maximum resolution (on the interface) is set to Lmax (i.e. a cell size
h = L 2−Lmax). Cells coarsen further away from the interface reaching a
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Figure 5: Results for the simulations describing charge relaxation of an isolated conducting
cylinder. The free parameters are chosen as: R = 0.05, L = 1, K1 = 3, ε1 = 3, ε = 2
and ρeo = 0.5. In the upper plot the time evolution of the total amount of charge in
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indicate simulation results where the charge density equation is modeled with Eq. (21) and
∗ symbols show simulation results with Eq. (34). In the lower plot the spatial distribution
of the electric field is shown, once the steady state is reached for different levels of mesh
refinement. The continuous line shows the analytical approximation given by Eq. (38), o
symbols are obtained with a uniform mesh of level L = 5 (mesh grid given by 2L × 2L),
♢ symbols are obtained with a uniform mesh of level 6, ▽ with a uniform mesh of level
L = 7, and • with an adapted non-uniform mesh (Lmax = 10, Lmin = 6).
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Figure 6: Sketch of the geometry, electrical conditions and computational domain for the
study of the electrohydrodynamic deformation of droplets of section 4.3.

minimum level, Lmin. In the adapted mesh depicted in fig. 5 we have set
Lmax = 10 and Lmin = 6. The electric field distribution in the dielectric
medium is accurately recovered independently of the refinement of the mesh
used in the simulations. As expected, a better description of the electric field
jump across the interface is obtained as the mesh is locally refined.

4.3. Electrohydrodynamic deformation of droplets

Finally in this section we study a more complete and realistic problem.
We simulate the deformations experienced by a liquid droplet of radius Rd

suspended in a bath of a second liquid when subjected to an imposed elec-
trical electric field E∞ as shown in figure 6.

The liquids are immiscible and separated by an interface with surface ten-
sion coefficient γ. Buoyant forces are absent since the densities of the fluids
are identical. Due to the applied electric field the droplet deforms, eventually
adopting a stable spheroidal form. The spheroid can be prolate (if the great-
est deformation is produced in the direction of the applied electric field) or
oblate (the largest deformations occurs perpendicularly to the electric field,
see figure 6) depending on the electrical and fluid mechanical properties of
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the fluids involved. Within the literature dedicated to this problem (see Hua
et al. [36] and the references therein), the work of Taylor [37] is especially
relevant. Taylor characterises the total deformation of the droplet by means
of the parameter D given by the expression

D =
b− a

a+ b
(39)

where b and a are the sizes of the spheroid in the direction parallel and per-
pendicular to the electric field respectively (see figure 6). Prolate spheroids
correspond toD > 0 and oblate ones toD < 0. Using a linearised asymptotic
analysis and assuming that both fluids are extremely viscous and conducting,
Taylor provided an expression for D as a function of the fluid properties and
the electric field intensity,

D =
9

16

CaE
(2 +R)2

[
1 +R2 − 2Q+

3

5
(R−Q)

2 + 3λ

1 + λ

]
(40)

where R = K1/K2, Q = ε1/ε2 and λ = µ1/µ2 stand for the ratio of the inner
to the outer conductivities, permittivities and viscosities, respectively. CaE
is the electric capillary number given by CaE = E2

∞Rdε2/γ. Note that as
a consequence of adopting the S.I system of units, the factor in Eq. (40)
is 9/16 [38, 39] rather than 9/8π appearing in Eq. (25) of Taylor [37]. The
expression (33) of Hua et al. [36] set the factor to 9/8π when apparently they
also use the S.I system of units.

Most of the numerical simulations we present in this section have been
performed using an axisymmetric version of the numerical scheme. For val-
idation purposes, some simulations have been repeated with a fully three-
dimensional scheme. The testing has been performed in two steps. First, we
have confirmed that both our schemes, three-dimensional and axisymmetric,
reproduce the electrostatic analytical solution derived by Taylor [37] for a
spherical drop. Once the electrostatic part of the code has been checked, we
have simulated the complete, coupled, EHD problem.

The electric field solution in polar coordinates shown in figure 6 reads for
the outer fluid,

E2r = −
[
1 +

2(R− 1)

2 +R

1

r3

]
cos θ and E2θ =

[
1− R− 1

2 +R

1

r3

]
sin θ (41)

and for the inner fluid,

E1r = − 3

2 +R
cos θ and E1θ =

3

2 +R
sin θ (42)
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Figure 7: Comparison between the analytical dimensionless electrostatic solution given
by Eqs. (41) and (42) and our numerical simulations for a conducting droplet suspended
in a conducting liquid (along a θ = π transect). The conductivity ratio is R = 2.5.
◦ symbols indicate simulation results with the full three-dimensional scheme. � and ⋄
symbols correspond to axisymmetric numerical simulations using the WAM and WHM
interpolations schemes, respectively. All simulations use an adaptive mesh with Lmax = 9
and Lmin = 5. The continuous line corresponds to the analytical solution.

In the above expressions the electric field has been made dimensionless with
E∞ and the radius r with Rd. In figure 7 we plot the radial electric field dis-
tribution along the negative branch of the x axis (θ = π) for the axisymmetric
and 3D schemes with R = 2.5 and Rd = 0.1. In the numerical computations
we have applied the gradient adaptation criterion to the volume fraction.
The maximum and minimum level used for adaptation are Lmax = 9 and
Lmin = 5. Figure 7 confirms that the electric field computation using both
schemes agrees very well with the analytical solution.

To explore extensively the influence of the different parameters on the
droplet deformation is beyond the scope of this section. Thus we focus on
the cases reported by Tomar et al. [27]. Following Tomar et al. [27], we set
the ratio of permittivities and viscosities to Q = 10 and λ = 1 respectively.
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The remaining parameters have been set to Rd = 0.1, ε2 = 1, E∞ = 1.34
and γ = 1 (CaE ≃ 0.18); the viscosity of the outer medium is µ2 = 0.1
in order to be close to a Stokes flow as assumed by Taylor [37]. With this
value of the viscosity the Reynolds number, Re = ρvcRd/µ2 ≃ 10−1 with
vc = Rdε2E

2
∞/µ2, is small.

We have first simulated the case in which the droplet should not deform
(R = 5.1) while recirculation is induced by the electrical tangential stresses.
In figure 8 we display the computed radial and azimuthal components of the
velocity (see fig. 6) along a θ = π/4 transect together with the analytical
solution [27, 40] which can be written, for the inner fluid

v1r = Ar(1− r2)(3 cos2 θ − 1) and v1θ =
3A

2
r

(
1− 5

3
r2
)
sin 2θ, (43)

and for the outer fluid,

v2r = A
(
r−4 − r−2

)
(3 cos2 θ − 1) and v1θ = −Ar−4 sin 2θ , (44)

where r has been made dimensionless with Rd and A stands for

A = − 9

10

Rdε2E
2
∞

µ2

1

(1 + λ)

R−Q

(R + 2)2
. (45)

The velocities in figure 8 have been normalized with the characteristic ve-
locity vc. Excellent agreement between the computed and analytical values
is obtained for both components. Note that to obtain such an agreement, it
is necessary to minimise the influence of domain boundaries (confinement)
which can be very significant for Stokes flows due to the elliptic nature of the
equations in that limit. To do so, the domain extent has been set to L = 2
(compared to Rd = 0.1) and free-slip boundary conditions (∂v/∂n = 0) were
imposed. The computational cost of using such a large domain is greatly min-
imised by using an adaptive spatial resolution with a minimum level of refine-
ment (Lmin = 4) and a maximum level of Lmax = 10 (so that hmin = L 2−Lmax

and Rd/hmin = 51.2).
In figure 9 we plot the evolution of the deformation D with the ratio of

conductivities R obtained using our scheme, the scheme of Tomar et al. [27]
and Taylor’s theoretical solution (Eq. (40)). To further check that confine-
ment effects are minimal, we display our results for two domain sizes: L = 1
and L = 2 and two viscosities: µ = 0.1 and µ = 1.0. The independence of
the deformations from the domain size for identical viscosities shows that the
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droplet dynamic is unaffected by the boundaries provided they are sufficiently
far away. For small values of the deformation (−0.05 < D < 0.05) both sets
of simulations agree well with the analytical solution. For larger deforma-
tions, the solutions diverge, most likely because the analytical solution relies
on a linearised asymptotic analysis valid only for small deformations. The
departure from Taylor’s theory is smaller for a larger value of the viscosity
because such a flow is closer to the pure Stokes flow assumed by Taylor. For
a viscosity µ = 1.0 our results agree well with those of Tomar et al. [27].

Figure 10 illustrates the velocity field distribution using a final adapted
mesh Lmax = 10 (Rd/hmin = 51.2) and the axisymmetric (a) or the full
three-dimensional scheme (b). As expected the deformation D is negligible.
The deformation calculated using the axisymmetric scheme with Lmax = 9
(Rd/hmin = 25.6)isD = −5.5×10−4. The deformation decreases toD = 10−4

if the mesh is finer (Lmax = 10 Rd/hmin) = 51.2); with the full 3D scheme
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(a) (b)

Figure 10: Velocity field for a conducting drop in a bath of a conducting liquid subjected
to an electric field. No deformation case corresponding to R = 5.1 and Q = 10 using (a)
the axisymmetric scheme and (b) the full three-dimensional scheme. The simulations was
performed with a final adapted mesh Lmax = 10 (Rd/hmin = 51.2).

Rd/hmin R=5.1 R=1.81
Taylor [37] (Eq. 40) - 0 -0.195
Tomar et al. [27] 20 5.0 10−3 -0.147
Sim. µ = 0.1 51.2 1.0 10−4 -0.113

25.6 −5.5 10−4 -0.112
Sim. µ = 1.0 51.2 −1.1 10−3 -0.147

25.6 −6.5 10−4 -0.138

Table 3: Deformation D in the cases of R = 5.1 and R = 1.81 for the different viscosities
and grid sizes used.

and a similar mesh, the deformation is slightly higher, D = 4.1 × 10−4. In
accordance with Taylor [37] recirculations are induced inside and outside of
the droplet in the direction determined by the tangential electric stress.

Finally figure 11 illustrates the pressure distribution and the recirculat-
ing velocity field induced inside and outside the droplet when the ratio of
conductivities is lowered to R = 1.81 (the viscosity is set to 0.1 and the
other parameters remain unchanged). In this case the droplet deformation
we calculate is D = −0.113 (for µ = 0.1) while the computational results of
Tomar et al. [27] as well as our result for µ = 1.0 give a deformation slightly
more oblate (D ≃ −0.147). Taylor’s prediction, Eq. (40), is D = −0.195.
In table 3 we summarize for a better comparison the deformation D in the
cases of R = 5.1 and R = 1.81 for the different viscosities and grid sizes.

The slight difference in the deformation D we found for viscosities of
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Figure 11: Isocontours of pressure (red lines) and recirculating velocity field in a con-
ducting drop immersed in a bath of a conducting liquid (R = 1.81 and Q = 10). The
isoncontour range is p=16-22 with ∆p = 1.0 intervals. The simulation was performed with
an adapted mesh (Lmax = 10, Rd/hmin = 51.2)
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m=0.1 m=1.0

Figure 12: Isocontours of charge density (red lines: positive values of charge density; blue
lines: negative values) around the spheroid tip for two different viscosities (R = 1.81,
Q = 10). The isocontour range is 450 ≥ ρe ≥ −450 at intervals ∆ρe = 100.

µ = 0.1 and µ = 1 could be due to the presence of some convection of
charge on the tip of the spheroid. In figure 12 we show the distribution
of charge in the vicinity of the tip for both viscosities. In the left figure
(µ = 0.1) it can be observed that, close to the tip, the charge spreads slightly
into the droplet as it is pulled by the flow in that region. If the viscosity
is increased to one, the velocity decreases by one order of magnitude and,
consequently, the convection of charge cannot compete against the relaxation
by conduction anymore; i.e. all the charge is accumulated at the interface
(see figure 12 right). Note that both Taylor [37] and Tomar et al. [27] ignore
charge convection in their models.

We have also carried out some simulations assuming that the suspended
droplet behaves as an isolating medium (a bubble). Accordingly, we have
set the conductivity of the inner fluid to K1 = 0 (R = 0). Note that the
permittivity of a gas is close to the permittivity of the vacuum εo, therefore,
the ratio of permittivity Q has to be smaller than one. We have assumed that
the outer fluid is an apolar one (for example heptane) with a permittivity
ε2 = 2ε1 (Q = 0.5) (heptane has a permittivity ε = 1.92εo). Since the
inner fluid is assumed to be a gas, its viscosity and density have been set
to values a thousand time smaller than the outer fluid, ρ1 = 10−3ρ2 and
µ1 = 10−3µ2. The remaining parameters have been kept similar to the values
used above: µ2 = 0.1, E∞ = 1.0, Rd = 0.1 and ρ2 = 1.0. In the simulation
we have neglected both compressibility and buoyancy forces and it has been
performed using both WAM and WHM interpolation and mesh adaptation
(Lmax = 10, Rd/hmin) = 51.2).

As can be observed in the left plot of figure 13 very similar charge distri-
butions across the interface are obtained using the WAM and WHM inter-
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Figure 13: Left plot: Charge density distribution across the interface along a θ = π/4
transect computed using both the WAM and WHM schemes The volume fraction c is also
shown. The charge density has been normalized with the maximum value obtained using
the WAM scheme. The radius has been made dimensionless with the droplet radius. Right
plot: Radial and azimuthal components of the non-dimensional electric field, Er and Eθ,
as functions of the dimensionless radius r along the θ = π/4 transect. The analytical
solution given by Eqs. (41) and (42) is also plotted.

polations, although with the WHM interpolation the charge distribution is
slightly more diffuse than using WAM. In the same plot it can be observed
that the charge tends to accumulate on the “inside” of the diffuse interface,
i.e the peak of charge is localized for a radius slightly smaller than the radius
of the droplet. This trend causes the computed electric field inside the bub-
ble to be slightly different from the analytical result given by Eqs. (41) and
(42) (see also right plot in figure 13). Naturally, this error could be reduced
further using a finer grid since the distance between the peak of charge and
the interface position would decrease.

In figure 14 we show the effect of the electric forces on the fluids involved.
The electric tangential stress acting on the interface set a strong recirculation
both inside and outside the bubble (see figure 14.A) although the electrical
stresses at the interface do not cause any appreciable deformation of the
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Figure 14: (A) Velocity pattern inside and around a gas bubble. (B) Computed radial
and azimuthal components of the non-dimensional velocity, vr and vθ, as functions of the
radius r along a θ = π/4 transect (red line).

bubble. In figure 14.B we plot the computed velocity pattern. It can be
observed that the velocity profiles are very similar to the one created in the
conducting droplet immersed in a conducting medium (see fig. 8) although
one order of magnitude weaker.

5. Conclusion

A volume-of-fluid (VOF) method has been presented, adapted to the
solution of the governing equations for two-phase EHD problems. Special
attention has been paid to the calculation of the electric forces and to the
solution of the charge density equation. The proposed method does not re-
quire any restriction concerning the electrical behaviour of the fluids involved
and is especially well-suited to deal with interfacial flows due to its conser-
vative nature. This makes the method applicable to the study of problems
in which the bulk charge conduction and convection can play a relevant role,
such as the characterization of the cone-to-jet transition region (also referred
to as the neck region) appearing in EHD cone-jet electrosprays [41]. Note
also that the proposed method allows the analysis of the transient stages
occurring during the relaxation of charge from the bulk to the interface.
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The capabilities of the proposed model to provide accurate solutions for
the interfacial pressure jump caused by electrical stresses has been tested
with planar geometries for different limits of the electric fluid behavior. The
numerical scheme proposed for the charge conservation equation accurately
predicts the time evolution of the charge distribution. In addition the over-
all charge conservation has been checked. Finally, the scheme has been
tested against a fully coupled EHD problem; the deformations of conducting
droplets immersed in a conducting bath, with excellent results.

Although Gerris is designed to solve hydrodynamic problems in complex
geometries [4], the Gerris-EHD extension currently assumes that all cells
are fully occupied by fluid. In a near future we intend to generalise the
solver to be able to deal with mixed cells (i.e. cells partially occupied by a
solid). This will allow the numerical study of electrohydrodynamic problems
in complex geometries such as the simulation of the electro-flow-focusing
method of spraying [42] or the characterization of microfluidic devices.
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[40] J. M. López-Herrera, S. Popinet, Equilibrium of a droplet sus-
pended in an electric field, http://gfs.sourceforge.net/tests/

tests/electro.html.

[41] J. F. de la Mora, The fluid dynamics of Taylor cones., Annu. Rev. Fluid
Mech. 39 (2007) 217–243.

[42] A. M. Gañán-Calvo, J. M. Lopez-Herrera, P. Riesco-Chueca, The com-
bination of electrospray and capillary flow focusing, J. Fluid Mech. 566
(2006) 421–455.

36


