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1 Basic equations

Given a control volume V of boundary S, the variable-density incompressible Euler equations
can be written in integral form.

Mass conservation:
d

dt

∫

V

ρ dv+

∮

S

ρu ·n ds=0 (1)

Momentum conservation:

d

dt

∫

V

ρu dv+

∮

S

(− pn+ ρu (u ·n)) ds=

∫

V

f dv (2)

Incompressibility:

∇ ·u=0

with ρ the density, u the velocity, p the pressure, n the unit vector normal to S and f a force
per unit volume. Of course, incompressibility does not imply (spatially-)constant density, it only
means that material particles (advected by the flow) have a constant density (as reflected in the
mass conservation equation).

From a numerical point of view, this set of equations can be decomposed in three subprob-
lems:

1. advection of quantities: ρ and ρu,

2. computation of the surface tension volumetric force fσ,

3. imposition of the incompressibility condition.

In the following we will introduce the concepts required to solve 1 and 2 in the context of inter-
facial flows. The imposition of incompressibility 3 is not specific to interfaces and we refer the
reader to the existing litterature on this topic [3].

2 Advection scheme

As a starting point, we can assume that the scalar field ρ and vector field ρ u are generic and
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share common properties such as continuity, differentiability, etc... A generic scheme can thus
be derived which could be suitable for advection of either ρ or ρ u. For simplicity we will con-
sider below only advection of a scalar quantity ρ (which is not necessarily density).

Let us first consider a one-dimensional discrete version of equation (1). If space is discretised
like this

x
i−1/2

x
i+1/2

u
i+1/2

i
ρ

u
i−1/2

where ui+1/2 is the “face-averaged” velocity

ui+1/2=

∮

Si+1/2

u ds

and ρi is the “cell-averaged” density,

ρi=
1

∆

∫

Vi

ρ dv= ρi=
1

∆

∫

xi−1/2

xi+1/2

ρ dx

with

∆= xi+1/2− xi−1/2

a simple discrete version of (1) can then be written

∆
d

dt
ρi= ρi−1/2ui−1/2− ρi+1/2ui+1/2.

Note that the dimension of the one-dimensional “cell volume” is ∆ while the dimension of the
zero-dimensional “face area” is unity. This evolution equation is only valid for the cell average
ρi, so the first question is how to compute the “face-average” ρi+1/2 from the cell average ρi? A
natural choice is

ρi+1/2=
ρi+ ρi+1

2

The resulting scheme is known as a “centered advection scheme”. The interpolated value ρi+1/2

is second-order accurate i.e. it will be exact for ρ varying linearly. In more general cases, the
interpolation error will scale to leading order as O(∆2).

For practical use, we also need to discretise time. This can be done for example using a first-
order time-discretisation such as

∆
d

dt
ρi≃∆

ρi
n+1− ρi
∆t

= ρi−1/2ui−1/2− ρi+1/2ui+1/2

where n is the discrete timestep. Combining it all together gives the explicit update algorithm

ρi
n+1= ρi

n+
∆t

2∆

[

(ρi
n+ ρi−1

n )ui−1/2− (ρi
n+ ρi+1

n )ui+1/2

]

(3)

This algorithm is formally second-order accurate in space and first-order accurate in time. It is
also discretely conservative by construction since the fluxes at the boundaries between cells
cancel out exactly. We will also assume that this scheme is stable provided a Courant-Friedrich-
Levy (CFL) condition is verified i.e.

∆t6
∆

U
(4)

Can we use this scheme in the case of flows with interfaces? In one dimension, an interface is
entirely defined by its position xI and the density can be expressed as

ρ(x) =

{

ρ1 if x<xI

ρ2 if x> xI

where ρ1 and ρ2 are the densities of the phases on the left and right sides of the interface respec-
tively. Note also that in one dimension the incompressibility condition

∇·u=0,

has for only trivial solution u= constant=U . Figure 1 illustrates what happens if we use scheme
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(3) to advect this density field. Only the first three timesteps are shown. It is clear that the
scheme creates oscillations of increasing amplitude. The CFL condition (4) is not sufficient for
stability.
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Figure 1. Explicit centered advection scheme applied to a discontinuous density field. ρ1=2, ρ2=1.

2.1 First-order upwind scheme

This instability is well-known for naive centered schemes. A simple way to construct a stable
scheme is to use “upwinding” i.e. to construct asymmetric fluxes which take into account the
direction of propagation. For example if we assume that U is positive, scheme (3) can be modi-
fied as

ρi
n+1= ρi

n+
∆t

∆

[

ρi−1
n ui−1/2− ρi

nui+1/2

]

(5)

where we see that the face values of ρ needed to compute the fluxes are now approximated as

ρi+1/2= ρi

This “extrapolation” of the centered values is of course only first-order accurate, that is, it will
be exact only for ρ = constant. Does this work better for advection of a discontinuous density
field? Figure 2 illustrates the result.
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Figure 2. First-order upwind advection scheme applied to a discontinuous density field. ρ1=2, ρ2=1.
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This looks much better than the centered scheme. In particular the density stays bounded
between 1 and 2, however the front does not remain sharp. Actually the thickness of the front
(i.e. the interface) increases with time. This is a manifestation of numerical diffusion. Can we
do better?

2.2 Second-order upwind scheme

We see that we used first-order extrapolation to derive the “upwind” face-centered value of ρ. A
simple idea would be to use an higher-order upwind extrapolation. For example, the second-
order extrapolation

ρi+1/2= ρi+(ρi− ρi−1)/2

This gives the second-order upwind scheme

ρi
n+1= ρi

n+
∆t

2∆

[

(3 ρi−1
n − ρi−2

n )ui−1/2− (3 ρi
n− ρi−1

n ) ui+1/2

]

(6)

Figure 3 illustrates the results for this scheme.
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Figure 3. Second-order upwind advection scheme applied to a discontinuous density field. ρ1=2, ρ2=1.

While this looks better than the second-order centered scheme, there are large oscilla-
tions “downstream” of the interface i.e. the scheme looks less diffusive than the first-order
upwind scheme but is not stable enough. One way to increase stability is to use “slope-limiters”.
We can generalise the extrapolation operator as

ρi+1/2= ρi+ φ(r) (ρi− ρi−1)/2

with

r=
ρi− ρi−1

ρi+1− ρi
,

and φ a “slope limiting” function. The idea is simple. If ρ is non-oscillatory then r (the “curva-
ture” of field ρ) is of order one and the second-order scheme (6) can be used (i.e. φ(r) = 1), oth-
erwise the stable first-order scheme (5) should be used (i.e. φ(r) = 0). The detail of the depen-
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dence of φ on r is largely determined from empirical considerations and is problem-dependent.
A simple choice is the “minmod” limiter

φ(r)=

{

r if r < 1
1 otherwise

which is the most dissipative of the Total-Variation-Diminishing (TVD) scheme. Another choice
is the “van Leer” limiter

φ(r)=
r+ |r |

1+ |r |

which is generally a good compromise between dissipation and stability.

For the interface advection problem this gives the results of Figure 4 and 5 respectively.
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Figure 4. Minmod-limited upwind advection scheme applied to a discontinuous density field. ρ1 = 2,

ρ2=1.
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Figure 5. Van Leer-limited upwind advection scheme applied to a discontinuous density field. ρ1 = 2,

ρ2=1.
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It is clear that the van Leer limiter in particular considerably reduces the numerical diffusion
compared to the first-order upwind scheme (Figure 2) and without the oscillations of the second-
order upwind scheme (Figure 3). Note however that the interface is not sharp anymore but
seems to stabilise to a thickness of about four grid points.

This slope-limited scheme can be extended to more than one dimension and to a second-
order time discretisation. This gives the Bell-Collela-Glaz (1989) scheme implemented in Gerris
to advect diffusive tracers i.e. an advection–diffusion equation of the form

d

dt

∫

V

ρ dv+

∮

S

(ρu+ ǫ∇ρ) ·n ds=0 (7)

where ǫ is a diffusion coefficient. The emphasis on diffusive is important. If ρ is diffusive and
the diffusion coefficient is large enough compared to the numerical diffusion then the solution of
(7) can be approximated correctly. Numerical diffusion depends both on the advection scheme
used and on spatial resolution. For example, if a high-enough resolution was used, the first-order
upwind scheme of Figure 2 could give results close to the van Leer-limited results of Figure 5.

Can we tolerate this numerical diffusion in the case of “real” interfaces? In a finite volume
sense the jump in physical properties caused by a real interface should be entirely contained
within a single finite volume. This means that strictly speaking, even the limited thickening of
the interface caused by the van Leer limiter is not acceptable. We will see however, that this
requirement of interface sharpness is often loosened in practice. A more problematic issue is that
even for “good” schemes such as the van Leer-limited scheme above, the remaining numerical dif-
fusion will cause the interface to thicken “forever”. Depending on the physical problem studied,
this thickening can be fast compared to the timescales of interest and can quickly degrade the
quality of the solution, and this with little hope of ever returning back to a sharp interface (in
contrast to shocks for example).

2.3 Interface tracking

Can we do better? Yes, if we make use of the fact that for interfacial flows, all the information
is contained within the interface itself. For example for our one-dimensional problem above, the
density field ρ is entirely determined by xI(t): the position of the interface. If we discretise ρ on
equidistant finite-volumes Vi= [xi−1/2:xi+1/2] then we have

ρi=















ρ1 if xi+1/26 xI

ρ2 if xi−1/2> xI

ρ2+(ρ1− ρ2)
xI − xi−1/2

xi+1/2− xi−1/2
otherwise

This can be rewritten

ρi= ci ρ1+(1− ci) ρ2 (8)

with

ci=















1 if xi+1/26 xI

0 if xi−1/2> xI

xI − xi−1/2

xi+1xI/2
−xi−1/2

otherwise
(9)

the volume fraction of the first phase (of density ρ1).

Although these particular relations are specific to our one-dimensional example, they can be
generalised to any interface in any dimension such that

ρi,j,	 ,n= ci,j,	 ,n ρ1+(1− ci,j,	 ,n) ρ2
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and

ci,j,	 ,n= f(xI)

where xI is a description of the position of the interface in n-dimensional space.

What is xI in practice? How is it updated as it evolves in time? Several methods are pos-
sible. For our one dimensional example, xI is the position of the interface which can be seen as
the position of a material particule transported by the flow i.e. it verifies the evolution equation

dxI

dt
=U

If we now consider the case of an interface in two or three dimensions, we could describe the
shape of the interface by distributing a finite number of material particules on the interface.
The positions of these particules (and thus the shape of the interface) could then be updated
using

dxI
k

dt
=u

This equation can be discretised and solved with high accuracy. This class of methods are often
called front-tracking or marker methods. Figure 6 illustrate typical discretisations of interfaces
in two or three dimensions.

two dimensions three dimensions

Figure 6. Discretisations of an interface for marker or front-tracking methods.

Once the updated position xI of the interface is known, the volume fraction field (and thus
the density field) can be obtained using relations similar to (9).

Marker-based methods are intuitively easy to understand but they also have significant draw-
backs (which they share with other Lagrangian methods). In particular, nothing guarantees that
the interface shape remains properly discretised when the positions of individual marker par-
ticule evolve in time. One can easily imagine for example that particules will accumulate at
stagnation points in the flow. To ensure an appropriate description of the interface, marker par-
ticules need to be redistributed periodically along the interface, which complicates practical
implementations. Changing interface topology (i.e. coalescence or breakup) can also be difficult
to deal with, as explicit “surgery” needs to be performed on the marker representation (Figure
6).

One way to work around these difficulties is to define the interface position implicitly i.e.
through an arbitrary function F such that

F(xI)= 0 (10)
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For example a circular interface centered on the origin and of radius unity could be defined as

xI =

(

x

y

)

such that F(xI)= x2+ y2− 1=0

Rather than discretise the interface itself, one can then choose to discretise the implicit function
F , for example on the same grid used to discretise the other quantities (such as c, ρ and u).
One can then solve (10) locally to recover xI and from there use relations similar to (9) to
derive c. Of course F must also evolve in time to reflect the evolution of the interface. What is
the evolution equation for F? A simple choice is to write

d

dt

∫

V

F dv+

∮

S

Fu ·n ds=0 (11)

that is F is simply advected by the flow as an ordinary tracer. It is then trivial to show that xI

(as defined by (10)) also verifies

dxI

dt
=u

This is the principle of the levelset method. Compared to an explicit marker discretisation of
the interface, it has several advantages. In particular F can be discretised using the standard
techniques and data structures used for other fields and topology changes can be handled
without complications.

At first sight, it is not obvious that we have gained anything by replacing the original advec-
tion equation for density (1) with the advection equation for the implicit function (11). The
important difference between (1) and (11) though, is that we are free to choose the form of F as
long as it verifies (10). In particular, we can choose F so that it is a smooth (i.e. differentiable)
function of space, in contrast to the discontinuous function ρ (in the case of an interface). This
means that the general schemes we derived above to solve (1) and (11) will be much more accu-
rate for F than for ρ. Furthermore, the remaining numerical diffusion for F will not impact on
the sharpness of the interface, since c will be derived from (sharp) relations analogous to (9).

Another important (but detrimental) difference between (1) and (11) is that although (11) is
written in conservation form, conservation of F does not have any physical interpretation.
Indeed, in the general case, the only physical interpretation of F is indirect, through the defini-
tion of the interface position (10). Although it is often interesting to define F as the signed dis-
tance to the interface (which gives it a physical meaning), solving (11) does not guarantee that
it remains so as the interface evolves. These differences have important practical consequences.
Although numerical diffusion of F does not degrade the sharpness of the interface, it does
degrade the accuracy with which the position of the interface xI is estimated (because the gra-
dient of F near the interface becomes smaller). This in turn can cause large errors in mass con-
servation (because conservation of F is not linked to conservation of c). In order to avoid losing
mass, it is thus necessary to periodically re-initialise F (for example to the exact signed distance
function to the interface), which complicates the method.

2.4 Volume-Of-Fluid

We have seen that interface-tracking methods circumvent the problem of excessive numerical dif-
fusion when solving (1) for interfacial fronts by using auxilliary fields (marker points or implicit
functions) to track and update a description of the position of the interface. We know however
that from a finite-volume point of view, the interface is uniquely defined by the discontinuity of
the density field ρ (or equivalently of the volume fraction field c). Rather than involve auxilliary
quantities is it possible to derive a scheme which would update c (and ρ) directly according to
(1) while avoiding numerical diffusion entirely?
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Let us start with the one-dimensional example studied previously. We can formulate a
generic first-order in time advection scheme as

ci
n+1= ci

n+
∆t

∆

[

Fi−1/2−Fi+1/2

]

(12)

where Fi+1/2 is the flux through the right-hand-side boundary of a finite volume. We derived

previously the following approximations for F

Fi+1/2=























ci+ ci+1

2
ui+1/2 centered scheme

ci ui+1/2 first order upwind scheme
(3 ci − ci−1)

2
ui+1/2 second order upwind	

If we now assume that c is discontinuous and bounded between zero and one, can we derive a
better estimate for the fluxes? Based on Figure 7 the answer is yes.

x
i−1/2

x
i+1/2

u
i+1/2

x
I

x
I

n n+1

∆t

Figure 7. Advection of a sharp interface and corresponding fluxes. The gray area is the flux Fi+1/2.

We first note that in the one-dimensional case the position of the interface is given by

xI =

{

xi−1/2+ ci∆ for 0<ci< 1

undefined otherwise
(13)

That is, the information on the interface position can be reconstructed directly from the volume
fraction field c. The fluxes can then be computed geometrically as (see Figure 7)

Fi+1/2=











0 if xI +ui+1/2∆t6 xi+1/2

ui+1/2 if xI >xi+1/2
1

∆t
(xI + ui+1/2∆t−xi+1/2) otherwise

Using the relation between xI and c and simplifying then gives

Fi+1/2=

{

0 if∆t6 (1− ci)∆/ui+1/2

ui+1/2+
∆

∆t
(ci− 1) otherwise

(14)

Note that given that u = constant for an incompressible one-dimensional flow, this scheme is
exact in the one-dimensional case. For reference, Figure 8 illustrates the solution obtained using
this scheme (combined with formula (8) to recover the density). As expected the interface thick-
ness is at most one cell. The overall scheme is conservative and non-diffusive and does not
involve fields other than the “primitive field” c. As illustrated here, it is also very simple (at least
in one dimension).

Advection scheme 9
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Figure 8. VOF advection scheme applied to a discontinuous density field. ρ1=2, ρ2=1.

Can we generalise this scheme to more than one dimension? The simplest way to do so is to
use split-direction advection i.e. use the one-dimensional scheme above alternatively in each
direction of propagation. This is the basic idea for the original VOF method. Using the one
dimensional scheme means that the interface is always reconstructed perpendicularly to the
direction of propagation using formula (13). An example of the corresponding interface recon-
struction is given in Figure 9.

Figure 9. Simple Line Interface Calculation (SLIC) interface reconstruction. The interface is reconstr-

cuted alternatively as the green lines (for horizontal advection) and red lines (for vertical advection).

The SLIC scheme is non-diffusive and conservative but does not work very well. Small pieces
of interfaces can easily split off the main body etc... Note also that since this scheme can not
reconstruct straight interfaces at arbitrary angles to the mesh, it is only formally first-order
accurate in space.

To improve the numerical scheme, the first step is to generalise formula (13) i.e. find a rela-
tion between the volume fraction field c and a description of the interface geometry xI valid also
in more than one dimension. A simple idea is to approximate the interface locally as a straight
line inclined at an arbitrary angle (rather than the vertical or horizontal segments of the SLIC
scheme). For example one could describe the interface locally as

mi ·x=αi
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where mi is the local (discrete) vector normal to the interface and αi is linked to the position of
the planar interface. Taking the notation above, the interface is now represented by a discrete

set xI
i = (mi, αi) of interfacial segments (see Figure 10). Note that the resulting interface repre-

sentation is piecewise-linear i.e. the segments are usually not exactly connected at their end-
points. Also, the method should be able to represent a straight interface at an arbitrary angle
and is thus second-order in space (at least in principle).

two dimensions three dimensions

Figure 10. Piecewise Linear Interface Calculation (PLIC) interface reconstruction.

What is the relation between (mi, αi) and ci i.e. the equivalent of formula (13) for PLIC?
An obvious relation is that the volume fraction ci multiplied by the volume of the control
volume Vi must equal the volume of the intersection of Vi with the half-plane defined by (mi,

αi) (Figure 10). This can be summarised as

ci= volume(Vi∩ (mi, αi))/volume(Vi) = v(Vi,mi, αi) (15)

The exact form of v depends on the details of the implementation (such as the shape of the con-
trol volume Vi) but only involves elementary geometric considerations. For Cartesian cells (i.e.
squares in 2D and cubes in 3D) it can be relatively simply implemented in a generic function.
Function v has one important property: for a given mi and ci, there is a unique αi verifying
(15). This can be summarised as

αi= v−1(Vi,mi, ci) (16)

As before for Cartesian cells the inverse function v−1 can easily be implemented as a generic
function. To close the problem, we thus need to find a way to derive mi from ci. In the con-
tinuum limit it is easy to show that

m=−
∇c

‖∇c‖

A first simple approach is to discretise this relation as

mi=−
∇hci

‖∇hci‖
(17)

where ∇h is a discrete gradient operator, for example, in two dimensions one could choose

∇hci,j=
1

2∆

(

ci+1,j − ci−1,j

ci,j+1− ci,j−1

)

(18)

We will see later that this is not a really good choice but that will do for now. Combining (17)
and (16) gives the general interface reconstruction scheme which allows to derive the geometric
interface description (mi, αi) from the volume fraction field ci.

Following the one-dimensional procedure above, the second step is to derive the geometrical
advection flux from the reconstructed interface (i.e. the equivalent of formula (14) above). To
illustrate the principle of the method, we will only consider uniform advection in one direction

Advection scheme 11



(i.e. one-dimensional advection of a 2D interface). Figure 7 gives a geometrical representation of
a simple flux calculation. Although an explicit formula is slightly more difficult to derive than
for (14) it is clear than this can be done again using simple geometrical calculations (i.e. a com-
bination of areas of triangles).

u
i+1/2 ∆t

Figure 11. Simple one-dimensional advection combined with PLIC interface reconstruction. The gray

area is the flux Fi+1/2,j.

How can this simple one-dimensional scheme be extended to two dimensions? A simple solu-
tion is to extend scheme (12) as

ci,j
n+1= ci,j

n +
∆t

∆

[

Fi−1/2,j −Fi+1/2,j+Fi,j−1/2−Fi,j+1/2

]

(19)

where each of the fluxes Fi±1/2,j±1/2 is computed using the geometrical flux estimate illustrated
in Figure (11) (in the respective directions). This scheme is conservative by construction, how-
ever it will not guarantee that

06 ci,j
n+1

6 1 (20)

That is because transverse or diagonal fluxes are not computed correctly. In practice what is
often done is to arbitrarily enforce (20) by chopping off any excess volume fraction. The
resulting scheme is thus not strictly mass conserving anymore. In practice however the mass
conservation properties of the resulting scheme are still very acceptable.

Nonetheless, given that one of the main theoretical advantage of the VOF method is mass
conservation, it is important to derive schemes which are strictly mass conserving. This is pos-
sible but not as simple as the approach described here and is beyong the scope of this introduc-
tion. The recent book by Tryggvason, Scardovelli and Zaleski is a good reference for such
advanced VOF schemes [3].

2.4.1 Deriving geometric quantities from the volume fraction field

We have seen above that an important step in the VOF scheme is interface reconstruction i.e.
deriving geometrical information (position, normal direction etc...) about the interface directly
from the volume fraction field c. We will see later that interface curvature is also an important
quantity which needs to be derived when computing surface tension. What are the relations
between these geometrical quantities and the volume fraction field c? To answer this question, it
is useful to first consider an interface defined implicitly by a smooth function F such that

F(xI) = 0

(see equation (10)) above. In that case the interface unit normal is given by

n=−
∇F

|∇F |
, (21)

and the interface curvature by

κ=−∇ ·n=∇ ·

(

∇F

|∇F |

)

(22)

For smooth functions the relations (21) and (22) can be discretised using standard finite differ-
ence operators such as (18) above. Using standard numerical analysis it is also relatively simple
to derive the formal order of accuracy of these discrete operators. If care is taken, reasonably
accurate schemes can thus be derived to compute n and κ from F . This is the essence of the
levelset method, and this apparent simplicity largely justifies the choice of this method for inter-
face representation and advection (despite the difficulties related to mass conservation).
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What happens to relations (21) and (22) if F is not a smooth function i.e. if we replace F
by c? These relations still hold, however they need to be interpreted in the context of distribu-

tions . For example (21) becomes

∇c=− δSn, (23)

where δS is the equivalent of the Dirac delta function for a surface (rather than a point). The
convergence with spatial resolution of the standard finite difference operators (such as (18)) rely
on the differentiability of F , so that these convergence results cannot be extended to the discon-
tinuous field c. This is why in practice using (18) to derive n from c does not give good results.

A first simple idea is to replace c with a “smoother” approximation c̃ and apply the discrete
versions of (21) and (22) on this field instead of c. The smooth field c̃ can be constructed in var-
ious ways, for example by filtering c spatially. This was historically how surface tension was first
implemented in VOF methods (see Brackbill 1992). For simple filtering techniques this does not
work very well either however (for example the curvature estimate often fails to converge with
grid resolution). Rather than use these somewhat naive filtering techniques, one could also
reconstruct a smooth levelset function F from c (i.e. c̃ =F). This is the principle of the coupled
VOF-Levelset method (CLSVOF) method which works well in practice.

Introducing an intermediate field is not very satisfactory however, for reasons related to an
increased complexity and also a loss of accuracy and consistency when switching between mul-
tiple interface representations. We will see now how the Height Function (HF) method allows to
derive accurate estimates of geometrical quantities directly from the volume fraction c. In two
dimensions one could choose to define an interface explicitly as

y= h(x)

Of course only univalued interfaces can be described with such a (graph) function. We will see
later how to circumvent this problem. With this definition, the normal n and curvature κ can
be computed using their standard definitions

n=
1

1+ h
′2

√

(

h′

− 1

)

(24)

κ=
h′′

(

1+ h
′2
)3/2

(25)

Using a discrete description of h on a regular grid one can then derive simple finite difference
schemes to compute n and κ. For example using

hi
′=

hi+1− hi−1

2∆
+O(∆2) (26)

hi
′′=

hi+1− 2 hi+ hi−1

∆2
+O(∆2) (27)

where the order of the approximation is deduced from classical analysis applied to smooth func-
tions. What is the relation between h and c? If a cell is cut by the interface we have

ci=
1

∆2

∫

xi−1/2

xi+1/2
(

h(x)− yj−1/2

)

dx

which can also be written

ci=
hi− yj−1/2

∆
with

hi=
1

∆

∫

xi−1/2

xi+1/2

h(x) dx

The reciprocal relation is simply (Figure 12)

hi=∆
∑

j

ci,j
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This relation is exact and combined with (24), (25), (26) and (27) gives a simple scheme which
allows to derive n and κ directly from c with formal second-order spatial accuracy (it can also
be extended to higher order using wider stencils in (26) and (27)).

x
i−1/2

x
i+1/2

h
i

j+1

j−1

j

c
i,j+1

i,j

c
i,j−1

c

Figure 12. Relation between the height-function h and the volume fraction c.

We have seen however that the height function description is consistent only for univalued
interfaces. A simple way to lift this constraint is to define the height-function locally.
Depending on the overall (rough) orientation of the interface, one can choose to define the
height function either along the x- or y-coordinate (Figure 13). If the interface is resolved with a
fine enough mesh, a consistent discretisation of the height function can be constructed. In the
few limit cases where the interface is not well-resolved, other consistent height-function approxi-
mations can still be constructed (see Popinet, 2009 for examples). Although we presented only
the two-dimensional case, the height-function method is trivially extended to three dimensions.

Figure 13. Choice of the direction of the local height-function reconstruction.
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3 Surface tension

The surface tension term is usually added as a force per unit volume in the momentum equation
(2). In the case where the surface tension coefficient is constant along the interface, this can be
written

fσ= κn δS

i.e. the surface tension force is proportional to the surface tension coefficient σ, is normal to the
interface and is non-zero only on the interface. For a finite-volume method, we are more inter-
ested in

∫

V

fσ dv=σ

∫

V

κn δS dv

For the two-dimensional case, using the first Serret-Frenet relation

∮

S

κn ds=

∮

S

dt

where t is the unit tangent vector to the interface, we get (see Figure 14)

σ

∮

A

B

κn ds=σ

∮

A

B

dt= σ (tB − tA) (28)

tB

tA
ρ

B

A
u

V

Figure 14. Surface tension term integrated over a control volume.

With this formulation we recover the intuitive definition of the surface tension force. Surface
tension itself is of course a force per unit area tangential to the surface, but its volume-inte-
grated resultant is a force per unit volume normal to the interface. Aside from this intuitive
interpretation, this formulation has the advantage of being momentum-conserving. Since by con-
struction, the surface tension forces σ t at the boundary between two control volumes are of
equal magnitude but opposite sign, the (discrete) integral of the tension surface forces along the
interface vanish, so that no net momentum is imparted to the interface.

An important difficulty with this method in practice however, is that it requires accurate and
consistent interface tangent estimates at the boundaries between control volumes. This is a diffi-
culty when using a VOF method because we have seen previously that the VOF interface repre-
sentation is only piecewise-linear, so that interface segments (and normals) are not continuous at
the boundaries between control volumes. On the other hand, the method can be applied rela-
tively easily when using a marker or levelset representation of the interface.

What are the other options for VOF methods? One can choose to go back to the volume-int-
tegrated definition of the surface tension term and use relation (23) to write

∫

V

fσ dv=σ

∫

V

κn δS dv=−σ

∫

V

κ∇c dv
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which suggests the following discrete approximation

σ

∫

Vi

fσ dv≈− σ∆2 κi∇i c (29)

where κi is a volume-averaged curvature which can be computed from ci using the the height-
function method above. This formulation is the basis for the Continuum-Surface-Force (CSF)
method of Brackbill (1992). Note that one of the drawbacks of this method is that it is not
strictly momentum-conserving anymore. We can also guess that it will be less accurate than
(28) since we approximate the gradient of a discontinuous function ∇c with a continuous dis-
crete version ∇i c .

3.1 Laplace’s relation for a circular drop: spurious currents

A useful case to consider when assessing the relative merits of different schemes for the represen-
tation of surface tension is the simple case of a droplet in equilibrium. In that case the volume-
integrated equations reduce to

∮

S

− pn ds=

∫

V

fσ dv= σ

∮

S

κn ds

which has a solution only if κ is a constant and

[p]S=− σκ

where [p]S is the jump of the pressure across the interface. The equilibrium solution is thus a
circular interface where the surface tension force is exactly balanced by the pressure jump across
the interface. This is known as “Laplace’s law” for circular droplets.

What happens when trying to solve this problem numerically? One could for example choose
to discretise the pressure term for the horizontal velocity component as

∮

S

− pn ds≈−∆2
∇i p

while discretising the surface tension term using the exact scheme (28), which would give the
discrete equilibrium condition

−∆2
∇i p=σ (tB − tA)

This condition is usually not trivially satisfied, actually it is easy to show that with this partic-
ular choice of discretisation of the pressure gradient, it cannot be satisfied for non-trivial inter-
face configurations (such as a circular interface). Where does this inconsistency come from? In
the general case, the terms on either side of the discrete equilibrium condition are discretised
using entirely different schemes. The discretisation errors associated with either terms will thus
behave differently (even if both schemes are formally second-order accurate for example). If care
is not taken, there is thus no reason for the discretisation errors on either side of the discrete
equilibrium relation to cancel out exactly.

Why does this matter in practice? Figure 15 illustrate a typical solution obtained using a
numerical scheme where the discrete balance is not verified. The velocity field observed is purely
numerical and is often known as “spurious currents”. These current are continuously fed by the
numerical imbalance and are only bounded by viscous dissipation. If viscous dissipation is low
and surface tension is high (such as in water–air applications or liquid metals) they can be
strong enough to even “atomise” the interface. Spurious currents are thus an important problem
for most methods using a naive implementation of surface tension terms.
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Figure 15. Spurious currents around a circular droplet using the original CSF method for surface ten-

sion terms.

To solve this problem one must look in detail at the properties of the numerical schemes in
the case of the circular interface. This is where the CSF method reveals a very useful property.
For the CSF scheme the discrete equilibrium condition for the circular interface can be written

∇̃i p=σ κi∇i c (30)

where a different notation has been deliberately chosen for the discrete gradient operator ∇̃i

applied to the pressure and that applied to the volume fraction ∇i. Indeed, for naive implemen-
tations of the CSF formulation (such as the original CSF method), the two operators are usually
different (because in particular of the constraints imposed by the projection method and the
choice of spatial discretisation). If care is taken however, the terms on either side of the discrete
equilibrium condition can be discretised using the same discrete operator ∇i: this combination is
often known as the balanced CSF method. If the curvature κi is constant everywhere, then (30)
admits a trivial discrete solution which is

pi=σ κ ci

Note that we have only demonstrated the existence of an exact discrete equilibrium solution for
a particular combination of numerical schemes. Whether this solution is reached in practice also
depends on other aspects of the code i.e. time integration, projection methods etc... The other
important requirement is that the discrete curvature estimate κi must be constant. The combi-
nation of schemes used within Gerris: balanced CSF and Height–Function curvature estimation,
has been demonstrated to always converge toward such a discrete equilibrium solution [2].
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