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The temporal instability of parallel two-phase mixing layers is studied with a linear stability code by
considering a composite error function base flow. The eigenfunctions of the linear problem are used
to initialize the velocity and volume fraction fields for direct numerical simulations of the
incompressible Navier—Stokes equations with the open-source GERRIS flow solver. We compare the
growth rate of the most unstable mode from the linear stability problem and from the simulation
results at moderate and large density and viscosity ratios in order to validate the code for a wide
range of physical parameters. The efficiency of the adaptive mesh refinement scheme is also
discussed. © 2010 American Institute of Physics. [doi:10.1063/1.3483206]

I. INTRODUCTION

Two-phase mixing layers are easily found in nature and
industrial applications. Typical phenomena are the formation
of sea waves by the wind and fuel atomization. In particular,
the breakup of a liquid jet in thermal engines is a very com-
plex phenomenon investigated by many research groups as
the atomization process is important for the combustion
quality, engine efficiency, and pollutant emission. A number
of mechanisms have been proposed that may lead ultimately
to ligament and droplet formation. A high level of turbulent
eddies upstream of the nozzle may have sufficient energy to
overcome the stabilizing effect of surface tension and to cre-
ate ligaments directly, while a lower level may give rise to
interface perturbations that are unstable, in this case the gas
phase plays an essential role. In the second situation, planar
models are likely to be relevant to jet instabilities at the early
stages of the interface evolution near the nozzle exit where
the observed spatial scale of the instability is small compared
to the jet radius.

This paper focuses on the direct numerical simulation of
unstable perturbations in two-phase mixing layers in a two-
dimensional Cartesian geometry and in circumstances in
which the turbulent eddies upstream of the nozzle are of
sufficiently small amplitude so that linearized analysis may
apply. This is in particular the case of a number of experi-
ments specially designed to reduce the turbulence level.!
This phenomenon was first investigated by Kelvin and
Helmholtz in the 19th century who developed the single-
phase inviscid theory. At the beginning of the 20th century,
Heisenberg, Lin, Tollmien, and Schlichting found how the
viscosity modifies and contributes to the inviscid
perturbations.2 Later on Yih found that for two different fluid
phases a viscosity contrast can give rise to an interfacial
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mode for long waves.’ Finally, Hooper and Boyd4 observed
other effects at small Reynolds numbers which have been
explained by Hinch.’

Up to now, a limited number of direct numerical simu-
lations of the Navier—Stokes equations for two-phase mixing
layers have been performed. Some preliminary results using
the volume of fluid (VOF) method have been presented by
Keller,6 Li,7 and Leboissetier.® Other two-dimensional simu-
lations of the Navier—Stokes equations have been performed
by Tauber’ using an interface front tracking method.

Linear stability analysis of viscous modes in two-phase
mixing layers has been performed by a number of authors. In
this paper we use the results obtained by Yecko'® and
Boeck'' who considered in their linear problem a base flow
composed by error function profiles in each fluid layer. The
eigenfuctions from their analysis are used to initialize the
interface and velocity profile, while the growth rate of the
most unstable mode is compared with the value from the
direct numerical simulations.

To perform the simulations presented in this work we
use the numerical code GERRIS,'2 an open-source flow solver
(http://gfs.sf.net). The incompressible single-fluid formula-
tion of the Navier—Stokes equations is simplified with a clas-
sical time-splitting projection method and the resulting Pois-
son equation for the pressure is solved with a multigrid
technique. The model implements adaptive mesh refinement
(AMR), which is based on a quad/octree spatial discretiza-
tion with automatic and dynamic local refinement according
to different physical criteria. A VOF/PLIC (piecewise linear
interface calculation) algorithm has been implemented to re-
construct the interface and a direction-split technique to ad-
vect the volume fraction function. Continuous surface force
(CSF) is combined with the height function method"® to
model surface tension.'* Some preliminary results about the
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FIG. 1. Parameters and base flow profiles used in the liquid and gas phases
for the viscous (left) and inviscid (right) linear stability problems.

validation of this code through comparison with the viscous
linear theory have been presented previously.15

The structure of the paper is as follows. In the following
section we discuss the linear eigenvalue problem including
the velocity distribution of the base flow and the inviscid and
viscous linear stability equations. Next we describe the initial
conditions of the direct numerical simulations obtained from
the eigenfunctions of the linear stability problem and how we
compute the growth rate of the instability from the simula-
tion data. Then we present the results at moderate and large
density and viscosity ratios discussing how the instability
wavenumber and the surface tension coefficient affect the
convergence of the simulations. Finally we discuss the effi-
ciency of AMR and present our conclusions.

Il. BASE FLOW AND LINEAR STABILITY PROBLEM

In experiments on atomization wavy perturbations of the
liquid-gas interface grow away from the nozzle, evolving
into liquid sheets that by three-dimensional destabilization
may develop ligaments that eventually break up into
droplets.'6 The velocity field near the interface is character-
ized by a boundary layer of different size in each phase,
which develops further on with the downstream distance
from the nozzle exit. In order to neglect the spatial evolution
of the base flow and to approximate the physical problem as
the temporal evolution of a spatially periodic flow, one has to
resort to the parallel flow assumption. The consistency of this
assumption requires the cross-stream velocity component to
be negligible compared to the streamwise component and the
predicted unstable wavelength to be much smaller than the
downstream distance over which the boundary layer thick-
ness changes significantly. Both requirements can be satisfied
within the usual assumptions of boundary layer theory,
namely, when the Reynolds number based on the down-
stream distance is large.17 We also remark that the stability
results for sinusoidal streamwise perturbations are related to
spatially growing perturbations by Gaster’s transformation
provided the growth over one oscillation period is suffi-
ciently small.'®

In this paper we are interested in the amplification of
wavy two-dimensional perturbations of a liquid-gas interface
which is initially flat, hence not too far away from the
nozzle. The base flow will be approximated by a parallel
flow, as schematically illustrated on the left of Fig. 1. The
stability of this flow will be studied as a linear eigenvalue
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problem and the eigenfunctions corresponding to a given
wave number will be used to initialize a perturbation of the
base flow. The perturbed initial state will be followed in time
by the numerical code GERRIS in order to compare the two
growth rates.

The self-similar velocity profile of the base flow has
been computed by Lock"? using the boundary layer theory
for a two-phase flow. Even if there is no analytical solution
of the nonlinear boundary layer equations, an analytical tanh-
profile has been considered as a good approximation of the
base flow for stability calculations in the one-phase
problem.20 Therefore, as in previous Works,lo’11 we consider
an error function profile for both phases. The argument of the
error function is scaled by the boundary layer thickness in
each phase and the zero is located on the stationary interface
line (see Fig. 1). The shape of the numerical solutions of Ref.
19 are well approximated by such error functions, while sta-
bility results based on the exact profiles of Lock’s problem
have been compared with those based on the error function
profile in Ref. 21.

A. Velocity distribution of the base flow

In the comoving reference frame where the velocity is
zero on the stationary interface, the analytical expressions for
the parallel base flow are

Uy)=Uj erf(y/8) (y<0), (1)

U,(y) = Uy erf(y/6,) (v >0), (2)

where the subscripts [/ and g denote liquid and gas (or more
generally two fluids with different physical properties) and
the interface coincides with the coordinate axis y=0.

The two asymptotic velocities, U, and U,, and the
boundary layer thicknesses, &, and &,, are not independent
parameters since they are coupled by the shear stress conti-
nuity at the interface. Thus, by using Egs. (1) and (2) the
following relation is established:

wU; _ my .

P

Nondimensional physical and geometrical parameters of the
problem are the density, viscosity, and thickness ratios,

0,

r:B‘g, m:ﬁg, n=-%. 4)
pi M o

To define other dimensionless numbers we need a reference
velocity and length. A convenient choice is the asymptotic
velocity UZ and boundary layer thickness J, of the gas phase.
With these two reference scales we define the Reynolds and
Weber numbers for the liquid and gas phases as

U,d U,d
Relzpl_u, Regszu’
M Mg
- - )
o= U0y PelUS
g ag

where o is the constant surface tension coefficient.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



092104-3 Instability growth rate of two-phase mixing layers

B. Inviscid and viscous eigenvalue problem

The linear stability problem is formulated in two dimen-
sions and without gravity for both phases. The perturbations
of the base flow are written in terms of the streamfunctions
Yy and ¢,, as in Refs. 10 and 11. The streamwise and cross-
stream velocity components u and v are defined by

u=ao, v=-0di (6)

in both phases. Since the unperturbed flow does not depend
on time ¢ and streamwise coordinate x, the linearization of
the dynamical problem about the base velocity profile im-
plies that the solution can be written as

(x.y.1) = i(y)explialx—cn]  (y<0), )

(x,y.1) = dy(y)explialx—cn)]  (y>0). (8)

With this ansatz and proper boundary conditions, we obtain
an eigenvalue problem for the two ordinary differential equa-
tions in ¢; and ¢,. The real wavenumber « should be con-
sidered as a parameter, while the complex eigenvalues
c=c,+ic; determine the phase velocity ¢, and growth rate
(ac;) of the modes.

In the inviscid case, from the linearized momentum
equation, one derives the following differential equations for
the liquid and gas phases:

(U= ¢)(D* - a®) ;- D*U;¢p; =0, )

(U, - ¢)(D* - *)p,— D*U,p, =0, (10)

where D is the differential operator along the cross-stream
coordinate y. The boundary conditions at the interface
(y=0) are the continuity of the normal component of the
velocity v and the pressure

¢l ¢g’ (11)

2

rcWe,d)l _(CD¢1+DU1¢1) (cD¢y+DU,b,).

(12)

Analytical solutions of Egs. (9)—(12) can be found when the
second derivative of the base flow U is zero, i.e., for base
velocity profiles composed by a chain of consecutive seg-
ments, as shown on the right of Fig. 1. In this case the solu-
tion is a linear combination of the exponential functions
exp(=ay). The same boundary conditions (11) and (12)
should be applied at the intersection of two consecutive seg-
ments. The whole problem is reduced to an algebraic eigen-
value problem for c¢. The roots of the characteristic polyno-
mial can be computed with standard software packages.

In the viscous case, the linearized momentum equation
gives rise to the well-known fourth-order Orr—Sommerfield
equation for each phase

)y,

(13)

1
(U= c)(D* - o) ¢y - DU1¢1_—R( D?
e
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(Uy = o)(D? = &), = DU, ¢g—— (D*=a?)’¢,.

(14)

Rel

The higher order of the differential equations leads to addi-
tional conditions at the interface, where we require the
continuity of the normal and tangential components of the
velocity

d)l ¢g’ (15)

<D+iDU,>¢Z:<D+£DUg>¢g, (16)

and that of the normal and tangential stresses as well
o2

=—(cDd¢;+ DU, +
e We,¢l (C o 1¢1) ar Re,

X(D*¢y—3a’Dep) — (D¢, + DU, ¢b,)

3 2
—ere (D¢, —32°D,), (17)

1 1
(1)2 +a’+ ;D2U1> &= m(02 +a’+ ;Dng> ¢, (18)

The viscous eigenvalue problem for the error function profile
can only be solved numerically. For the geometry shown in
Fig. 1 it is possible to introduce two semi-infinite mappings
to push the top and bottom boundary conditions to infinity,
see for example Ref. 22. Alternatively, one can set a bound-
ary condition at some large but finite cross-stream distance
from the interface. Therefore, we place two rigid walls at
y=-L; and y=L,, where the fluid velocity is equal to zero

d=D¢p=0 (y=-1L), (19)

=D, =0 (y=Ly). (20)

In the inviscid case only the normal component of the veloc-
ity is zero. We remark that L; and L, should be sufficiently
large in order to ensure the independence of the results from
their values.'™"" With this geometry, the initialization of the
nonlinear Navier—Stokes solver GERRIS is straightforward.
The linear stability problem for the complex eigenvalue
¢, with given physical and geometrical parameters and wave-
number « in the domain —-L,=<y=L,, is solved numerically
by using a Chebyshev collocation method. 102324 Each fluid
subdomain, [-L;,0] and [0, L,], is transformed into the inter-
val [—1,1], by a different linear transformation of the inde-
pendent variable y. The eigenfunctions ¢; and ¢, are ex-
panded in Chebyshev polynomials and are evaluated at
prescribed collocation points, here the extrema of the highest
order polynomial, in order to ensure spectral accuracy. B
the resulting linear algebraic system for the coefficients of
the Chebyshev polynomials, the eigenvalue ¢ is considered
as a parameter, and the system is resolved with the
QZ—algorithm26 implemented in the numerical algorithms
group library. At the end of the calculation, the eigenfunc-
tions are normalized in such a way that the maximum coef-
ficient is equal to 1. For a given set of physical and geometri-
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TABLE I. Physical and geometrical parameters of the base flow profiles.

Case m r §/L;  S,/L Re; Re, We,  We,
A 0.1 1 1/6 1/6 200 2000 ® ©
B 0.1 1 1/6 1/6 200 2000 10 10
C 099 0.1 1/6 1/6 19800 2000 ® %©
D 099 0.1 1/6 1/6 19800 2000 100 10
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TABLE II. Variation of the growth rate with the number N of Chebyshev
polynomials for the four cases of Table I with ad,=m/2.

cal parameters and wavenumber «, several unstable modes
with different growth rates may be found. A detailed analysis
of these modes and of the physical mechanisms driving the
instability can be found in Ref. 11. In this paper we focus
only on the most unstable mode.

lll. SIMULATIONS AT MODERATE DENSITY
AND VISCOSITY RATIOS

In this section we present the results of the eigenvalue
problem and the numerical simulations for cases where the
density and viscosity ratios are of the order of 10.

A. Base flow parameters

The four parameters U, U;, &, and &, are related by Eq.
(3). Furthermore, we assume &=6,=L/6, with L=L,=L,.
Then, we need to specify only the reference velocity,
U,=10 m/s, and length, §,=2.5X 103 m. For all cases,
the gas properties have the same value, with density p,
=1 kg/m? and viscosity Me=1.25X 107 kg/ms. The sur-
face tension coefficient o is either zero or 2.5X 1072 J/m?.

In the first two cases A and B of Table I, the two fluids
have the same density, r= pe/pi=1, but different viscosity,
m=p,/ u;=0.1. The other two cases, C and D, have almost
the same viscosity, m=0.99, but a different density, »=0.1.
With these values the adimensional numbers given in Table I
are readily computed.

B. Eigenfunctions from linear stability theory

An important parameter to get accurate results in the
linear eigenvalue problem is the number N of Chebyshev
polynomials used in the expansion of the eigenfunctions ¢,
and ¢,. We consider the same number of polynomials in the
liquid and gas phases, i.e., N=N;=N,. The growth rate for
the four cases of Table I is presented in Table II as a function
of the integer N. For each case we observe a range of N
where the growth rate remains roughly constant. To compute
the eigenfunctions we consider the minimum value in this
interval of N. Thus, for the four cases of Table I we have
chosen N=(70,70,100,100). Beyond this range of constant
growth rate, round-off errors become important as the num-
ber N of polynomials is increased. Quadruple precision could
be a way to overcome this issue.

Next, we examine the profile of the eigenfunctions. Fig-
ure 2 shows the real ¢,(y) and imaginary ¢,;(y) parts of these
functions for the cases A and C of Table 1. The real part ¢,(y)
of the eigenfunction is rather similar in the two cases, while
the behavior of the imaginary part ¢,(y) is substantially dif-
ferent. For case A, with density ratio r=1 and viscosity ratio

Case

N A B C D

40 0.10855398 0.093916996 1.5400230 0.14058223
70 0.10870192 0.093773774 0.20126900 0.18923558
90 0.10870175 0.093773438 0.20070193 0.18854588
100 0.10870181 0.0937734382 0.20069428 0.18853798
120 0.10870161 0.093773446 0.20069689 0.18853832
140 0.10870154 0.093773649 0.20069848 0.18850341
160 0.10870432 0.093774442 0.20069865 0.18860924
190 0.10871292 0.093770611 0.20071194 0.19463859

m=0.1, we observe a very sharp negative peak in the liquid
phase (y<<0) just across the interface, and a weaker and
more round maximum in the gas phase (y>0). The opposite
is found for case C, with density ratio r=0.1 and viscosity
ratio m=0.99. There is a very large and round minimum in
the liquid and a sharp but rather small maximum in the gas.
Notice that the imaginary part of the eigenfunction changes
its sign twice in the gas. The introduction of surface tension,
at least in these two cases, does not change the shape of
the eigenfunctions, but simply reduces the amplitude of its
extremum.

)

o/ (8,*uU

)
(=}

%/ (8,*uU

FIG. 2. Real (top) and imaginary (bottom) parts of the eigenfunction
d(y)=(y)+ig(y) for cases A and C of Table L.
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C. Growth rates from the linear stability theory
and initial-value problem

Let us consider a rectangular domain defined by
—L<y<O0 for the liquid phase and 0<y<L for the gas
phase, while in the streamwise coordinate x we take the hori-
zontal length L ,=2/3L. The basic geometrical structures in
the GERRIS code are squares, so our computational domain
consists of three boxes in the vertical direction each of them
with a maximum of 2567 square cells. When we use AMR
the maximum resolution has the same grid spacing, i.e.,
h=L,/256. We consider an initial perturbation with a wave-
length equal to L,, then the wavenumber is a=2m/L,, and
we change the adimensional wavenumber ad, by varying the
gas boundary layer thickness &,.

The velocity profile at the beginning of the simulation is
the sum of the base profile, Egs. (1) and (2), and a small
perturbation derived from the complex streamfunctions i,
and ¢y given by Eqgs. (7) and (8),

u(x,y,t=0) = U(y) + e[D ¢, cos(ax) — D¢; sin(ax)],
(21)

v(x,y,t=0) = eaf| ¢p; cos(ax) + ¢, sin(ax)], (22)

where g/ U:= 1073 is the amplitude of the perturbation. In the
regime of linear growth rate, the results do not depend on
this ratio. Its value is a simple numerical compromise be-
tween an appreciable size of the initial perturbation with re-
spect to the grid spacing and a large temporal window of
linear growth rate (as shown on the bottom of Fig. 3).

The displacement 7 of the interface from the base state
is given by the equation

“0(x,0,¢
dxt) = vy = 0.1) — 1) = il |”(x|2 ) 3
ac

where the v component of the velocity is evaluated at the
initial time 7=0. The real part of Eq. (23) allows us to obtain
the initial interface displacement
8a2
7(x,1=0)= w{c,{@ cos(ax) + ¢, sin(ax)]
+¢,[ ¢, cos(ax) - ¢; sin(ax) ]}, (24)

which is used to initialize the volume fraction field C. Fi-
nally, we consider the harmonic mean of the viscosity,
1 C 1-C

—=—+ , (25)
MM My

because this mean has been shown to give better results
when the interface is parallel to the flow.'®

We should remark that the initial sinusoidal displace-
ment of the interface line is calculated from the solution,
expressed as a series of Chebyshev polynomials, of the ei-
genvalue problem derived from the linearized Navier—Stokes
equations, while the initial-value code GERRIS resolves the
nonlinear Navier—Stokes equations with a finite volume ap-
proach. Furthermore the VOF/PLIC algorithm approximates
the interface as a segment in each mixed cell and the capil-
lary force calculation as well is affected by numerical errors
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FIG. 3. Simulation and fitted profiles of the interface line (top) and time
evolution of its amplitude (bottom). The interface line on the left is at time
t=4 (“+” on the right plot).

that cause the well-known problem of spurious currents. All
these issues may be the source of high-frequency distur-
bances that interact nonlinearly with each other and with the
initial perturbation, which is the only unstable mode in the
spectrum. However, these disturbances initially are very
small and they need time to develop appreciably. Therefore,
in our simulations, we observe indeed an initial regime of
linear growth rate and, in order to obtain the temporal evo-
lution of the amplitude of the perturbation, we fit the inter-
face line with the sinusoidal function y=a sin(27x/L,+b)
+c, as shown on the top of Fig. 3, where a, b, and c are three
free parameters. We then estimate the growth rate of the
instability as the slope of the amplitude a of the wave as a
function of time ¢ on a linear-log plot, in the region where a
linear behavior is observed, as on the right of Fig. 3. This
procedure is applied to the simulation data coming from GER-
RIS and the fixed-grid code SURFER.27%

In Fig. 4 we compare the numerical results obtained with
GERRIS and the theoretical growth rates from the viscous and
inviscid linear stability formulations, respectively, given by
Eqgs. (9) and (10) and Egs. (13) and (14), for the four cases of
Table 1. The simulation results correctly predict the nondi-
mensional growth rate (ac;) of the linear stability theory.
Notice that the viscous and inviscid theories predict the same
behavior at small wavenumbers a5g. For case A, character-
ized by a surface tension coefficient equal to zero, the aver-
age percentage difference between the growth rates at differ-
ent ad, from the two different approaches is about 2%, while
the maximum is about 9%. For case B, with the same physi-
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FIG. 4. Theoretical and numerical growth rates of the most unstable mode
for cases A and B (top) and C and D (bottom) of Table I with a spatial
resolution of 16 511 cells in the GERRIS code.

cal parameters as case A and with surface tension, the nu-
merical and theoretical estimates of the growth rate are
closer to each other and the mean difference goes down to
about 0.8%. For cases C and D, the results are consistently
better. The mean percentage difference between the growth
rates computed from the initial-value problem and the vis-
cous linear stability theory at different ad, is about 0.45%
without surface tension and 0.6% when surface tension is
included. Thus we can conclude that at moderate density and
viscosity ratios, the results obtained with GERRIS compare
favorably with the growth rates from the linear stability ei-
genvalue problem.

Both codes, GERRIS and SURFER implement a direction-
split VOF/PLIC algorithm, but they have some noticeable
differences. In SURFER the advection and diffuse terms in the
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Navier—Stokes equation are discretized on a staggered grid
with a simple centered finite-difference scheme in space,
while the time-integration is fully explicit and first-order ac-
curate. The surface tension term is implemented with the
continuum-surface-stress approach27 and the Poisson equa-
tion for the pressure is solved with a multigrid technique. In
GERRIS variables are defined on a collocated grid. The advec-
tion term is estimated with a second-order unsplit upwind
scheme,29 with a Crank—Nicholson discretization of the vis-
cous term. The CSF approach30 for the capillary force has
been implemented, with a curvature calculation based on the
height function method. A staggered, second-order accurate
time discretization is also considered.*

In Table III we report the percentage difference between
the growth rates of the eigenvalue problem and the two
initial-value codes for ad,=m/2 as a function of the grid
resolution n,, i.e., the number of cells along the x-coordinate.
Although a reasonably good convergence with the mesh size
is obtained with both codes, GERRIS always displays a better
performance than SURFER. With GERRIS percentage differ-
ences less than 1% are obtained for the most refined meshes.

The error however ceases to decrease with mesh size in
cases B and D, the two cases with surface tension. Thus the
decrease of the error “saturates” around 1% for GERRIS. This
“saturation” is not observed for SURFER, presumably because
the 1% error level has not been reached with the grid reso-
lutions of the table. We do not know the origin of this satu-
ration. Because of extensive testing we exclude coding and
algorithm errors. There are several remaining explanations
for this kind of error: (a) the numerical method, although
properly coded, could be intrinsically nonconvergent, (b)
nonlinear effects could pollute the measurement of the
growth rate obtained from the linearized equations, (c) other
linear modes than the one initialized could pollute the mea-
surements, and (d) the time evolution of the base flow creates
errors.

We believe that (a) is likely: the method may be not
convergent because the surface tension and the density and
viscosity jumps create a singularity on the interface which is
only partially accounted for by our method. For instance, the
methods used for the estimation of the viscous effects do not
take into account the fact that the velocity gradient has a
jump. However, the same remark holds for capillary waves,
and in that case a better agreement with theory is reported, of

TABLE III. Percentage difference of the growth rate for the four cases of Table I between the eigenvalue
problem and the GERRIS and SURFER codes, for grid resolutions, n,=16, 32, 64, 128, and 256, and wavenumber
ad,=/2. At the lowest resolutions we cannot always extract a meaningful growth rate from the simulation

data.
Code
GERRIS SURFER

Case 16 32 64 128 256 32 64 128 256
A 21.33 10.74 3.50 1.5 e 22.87 10.47 5.82
B . 7.30 1.28 0.48 1.04 et 29.43 20.47 13.94
C 3.00 1.17 0.24 0.14 0.09 33.21 16.72 8.63 4.32
D 3.98 1.39 0.76 0.07 0.54 33.49 16.1 8.67 6.19
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TABLE IV. Physical and geometrical parameters of the base flow profiles at
large density and viscosity ratios.

Case m r SIL  6,/L Re; Re, We, We,
E 0.01 0.001 1/8 1/8 200 2000 o %
F 0.01 0.001 1/8 1/8 20000 2000 100000 100

the order of 0.1% or better.'* Nevertheless, it is possible that
for a different testing procedure, the nonconvergence could
appear at higher or lower accuracy. (b) Nonlinear effects
should show as a progressive deviation from the straight line
in amplitude plots. We have not seen such effects, although
at the 1% level they could not be visible. One option would
be to reduce the range of amplitudes in which the growth rate
is measured, but this would also reduce the accuracy of the
growth rate measurement. (c) Other slowly decaying linear
modes are present and although we take care to initialize the
system purely with the single unstable mode, some numeri-
cal effects trigger a low-amplitude excitation of the other
modes. We somewhat reduced this effect but not completely.
(d) The time evolution of the base flow is diminished when
the Reynolds number is increased. We did not see a signifi-
cant change in the results as the Reynolds number was
varied.

IV. SIMULATIONS WITH VERY SMALL DENSITY
AND VISCOSITY RATIOS

In many practical applications, the density and viscosity
ratios are very small. In this section we present the results of
the eigenvalue problem and the numerical simulations with
GERRIS for a case where we decrease the viscosity ratio by
one order of magnitude, m=pu,/;=0.01, and the density
ratio by two orders of magnitude, r=p,/p;=0.001. The sur-
face tension coefficient o is either zero or 2.5X 1073 J/m?.
The value of the other relevant physical parameters, i.e., P>
Mg 5g, and U, is that of the previous section. The dimen-
sionless numbers for these two tests are given in Table IV.

In Fig. 5 we compare the numerical results obtained with
GERRIS and the theoretical growth rates from the viscous and
inviscid linear stability formulations for the two cases of
Table IV. Despite the large density and viscosity ratios, the
numerical simulations still provide a good approximation of
the growth rate (ac;) of the most unstable mode. However,
we remark the fact that it is more and more difficult to re-
produce the theoretical results when both the wavenumber «
and the surface tension coefficient o are increased. Indeed,
we reach a condition where the amplitude of the interface
perturbation does not present a regime of linear growth rate,
as in the case of Fig. 3, but where the amplitude continuously
oscillates in time and we cannot compute the growth rate.

An interesting feature of the spectrum of the most un-
stable mode is the separation between the viscous and invis-
cid branches as the wavenumber increases, as shown in the
zoomed area of Fig. 5. The curvature changes its sign twice,
this being a rather stable feature that does not depend on the
number N of Chebyshev polynomials.
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FIG. 5. Theoretical and numerical growth rates of the most unstable mode
for cases E and F of Table IV (top) and local zoom where the viscous and
inviscid curves separate from each other (bottom).

Another important issue of this set of simulations is the
convergence of the growth rate with mesh refinement, as
shown in Table V for ad,= /2. We observe that the percent-
age difference of the growth rate is close to the value found
at moderate density and viscosity ratios only at the highest
resolution, i.e., n,=256. In order to understand this behavior
we show in Fig. 6 the profile for case E of the real ¢, and
imaginary ¢; components of the eigenfunction ¢(y). Notice
that the eigenfunction changes very rapidly as it crosses the
interface at y=0 from the liquid (y<0) to the gas (y>0)
phase. Therefore, it is necessary to resolve adequately these
spatial variations with approximately 256 grid cells in order
to have a percentage difference of the order of 1% (see Fig.
6). As an alternative approach, one can also consider a more
refined, adaptive grid near the interface. The accuracy and
efficiency of this technique will be discussed in the next
section.

TABLE V. Percentage difference of the growth rate for the two cases of
Table IV between the eigenvalue problem and GERRIS, for maximal grid
resolutions, n,=32, 64, 128, and 256, and wavenumber aég:ﬂ'/Z. At the
lowest resolution we cannot extract a meaningful growth rate from the simu-
lation data.

Case 32 64 128 256
E 59.11 27.05 0.13
F 54.95 14.11 0.05
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FIG. 6. Real (top) and imaginary (bottom) components of the eigenfunction
¢(y) for case E of Table 1V.

V. EFFICIENCY OF ADAPTIVE MESH REFINEMENT

In the previous section we have pointed out the need of
grid refinement near the interface to resolve very steep
changes of the eigenfunction. In the present section we in-
vestigate the performance of the tree-based AMR imple-
mented in GERRIS. We consider again the four cases of Table
I and a computational domain with three boxes in the vertical
direction each of them with 2567 square cells, for a total of
N.=196 608 cells with a uniform mesh. With AMR we con-
sider a basic coarse resolution of 16> cells in each box and
allow up to four additional levels of adaptive refinement, in
order to have locally the same resolution of the fixed and
uniform mesh. We maintain this high resolution in a wide
band around the interface.

In Table VI, we provide the central processing unit
(CPU) time T for 100 time steps of a simulation. With AMR

Phys. Fluids 22, 092104 (2010)

we exclude the first ten steps of the simulation. This is be-
cause the initial step and a few of the following step are at
highest resolution in the entire domain, while after these few
steps the grid settles to the desired adaptation. This biases the
quantification of the number of cells N. which is an impor-
tant component of the measurements below. Indeed an inter-
esting measure is the number of cells processed in one sec-
ond, or per-cell speed, defined as
nN,

Z= — (26)

where N, is the average number of grid cells and n is the
number of time steps. A simulation with AMR will have fewer
cells and a smaller CPU time with respect to a uniform mesh
with the highest resolution, but also a different per-cell
speed. Therefore, it is interesting to compare the two per-cell
velocities by defining their ratio 7 as the “efficiency” of
adaptation, n=Z,yr/Z. One would expect that on a uniform
grid without AMR the per-cell speed would be higher, but
Table VI shows that the opposite is true: efficiency is larger
than one, so that adaptative simulations are faster by nearly a
factor 3/2 on the small meshes. The reason for this unex-
pected behavior is currently under investigation.

The results of Table VI show that the per-cell speed of
SURFER is approximately 20 times larger than that of GERRIS,
for a given test case and same mesh. However it may be
more interesting to compare the results at similar accuracy
rather than at the same number of cells. Then in many cases
GERRIS turns out to be more efficient.

VI. CONCLUSIONS

Numerical simulations of the instability evolution of a
viscous shear layer have been performed with GERRIS, an
adaptive mesh refinement code based on the volume of fluid
method. Good agreement between the growth rates predicted
by the linear eigenvalue problem and the nonlinear initial-
value problem solved by GERRIS is found for moderate den-
sity and viscosity ratios with a good convergence with grid
refinement.

For large density and viscosity ratios, it is more and
more difficult to compute the growth rate of the instabilities
as the wavenumber and the surface tension coefficient in-
crease. The main reason for this behavior is the fact that the
complex eigenfunctions develop very steep gradients near

TABLE VI. Average number of cells N, and CPU times 7 for the two codes GERRIS and SURFER, for case A of
Table I, with different grid resolutions n, and wavenumber ad,=/2.

Code
GERRIS SURFER
Ty (Ne) amr Tmr N, T 7 N, T
32 1727 3.19 3072 8.97 1.58 3072 0.47
64 4607 11.37 12 288 46.29 1.53 12 288 1.83
128 16 511 50.71 49 152 190.54 1.26 49 152 8.46
256 62 847 212.75 196 608 834.25 1.25 196 608 324
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the equilibrium interface and many grid points are there nec-
essary to resolve adequately the eigenfunctions. If high ac-
curacy is necessary then AMR is required in these conditions
in order to keep the grid size and the computational time
reasonable.
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