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VOF methodology	
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The never-ending attraction of simple ideas :	

	

The simplest discrete representation of a two-phase flow	
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This is the idea in Ising models, lattice-
gas liquid-gas or two-color	

models, and also an idea of Launder 
for two-phase flow. 	

	

	

But it does not work very well. The 
interface is too noisy, 	

the curvature is poorly computed, 
surface tension computation is	

plagued by large errors. 	

	

Make the number in each cell a real 
number marking the cell phase. 	

	


1	


1	


1	


1	


1	


1	


1	


1	


1	


0	


1	


1	


0	


0	


1	


1	


0	


0	


0	


1	




6/35 
 !

Cij   = Volume of « fluid » in cell ij	


True interface	


The Volume-of-Fluid  method	
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                                A bit of history	

	

	

Second-order (linear) reconstruction methods: 	

de Bar, Kraken code, 1974	

	

Momentum conserving 	

Rudman 1996	

	

Height-Function methods yield better surface tension & curvature: 	

Sussman, 2003 , Popinet 2009	

	

Coupled methods : with Level Sets or Front Tracking	

Sussman, 2003,  Aulisa, Manservisi, Scardovelli 2003	

	

Exactly (machine accuracy) mass conserving in 3D	

Weymouth & Yue 2010	

	

Exactly mass, momentum and energy conserving	

Le Chenadec, to appear. 	
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Height function method	


H j ,k = Ci, j ,k
i=−n

i=n

∑

h = H j ,k −
1
24

∂2h
∂x2

(Δx)2 +O(Δx4 )
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A quick estimates says that finite differences of heights give second derivatives	

to zeroth order. But notice that there are 3 different kinds of heights: x, y, and z. 	

	

When using three consecutive heights of the same kind, there is a cancellation and	

the result is still of order 2	

	

Define the first and second derivatives by finite differences. Compute the 	

curvature.  There is a cancellation and the result for cirvature and second	

derivatives are still second order !!	
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In 2D the succcess of the height function method depends on the 	

slope of the line. For 45 degree lines it is most difficult to get a « good »	

case with three consecutive height functions of the same kind. 	

	

There are two ways out: 	

	

1) Increase the number n that controls the height of the « stack » of points. 	

2) use « mixed » heights with different kinds of heigts x, y and z. 	
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1) can only do so much: if the curvature 
us high, extending the height of the stencil	

doesn not help. 	

	

In 2D, a height of 5 cells should be 
sufficient for all straight lines, so 7 cells 
are used to account for curved interfaces. 	

	

2) Using mixed heights reduces the order	

of the approximation. 	
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In 3D the most dangerous case is the direction n = (1,1,1). 	

	

This requires to look in the « diagonal » plane.  A stack of diagnonal plane	

shouls have a height of 5 for planar interfaces thus 7 to account for curvature	

and a thus a stencil of 9 x 3 x 3 is needed accounting for the full and empty	

cells at top and bottom.  	
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A third option is to use centroids:	

	

- find the normal direction	

- reconstruct the interface cutting the cube	

- find the center of mass of the interface in the cube. 	

	

Then find the elliptic paraboloid-(*)that fits through all the	

centroid points in a 3 x 3 x 3 assembly of cells.  The elliptic paraboloid is	

	

	

	

It requires 6 points so 6 centroids at least are needed.	


h = a + bx + cy + dx2 + exy + fy2
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The full method used by Gerris is	

	

1) attempt to find nine heights of the same kind	

2) if not: Find mixed heights 	

(mixing height of x, y and z types). Avoid height that give almost the same point	

(points less than dx/2 of each other). If 6 heights found: rotate the coordinate system.	

fit the elliptic paraboloid. 	

3) If not working: find centroids (still rotating the coordinate system). Fit the 	

elliptic paraboloid	

4) cap the curvature to some maximum value. 	

	

Simplified method:	

	

1) attempt to find nine heights of the same kind	

2) if not:  find centroids (do not rotate the coordinate system). Fit the 	

elliptic paraboloid.	

3) cap the curvature to some maximum value. 	

	

How to test this ? Initialize randomly a large number N of disks or spheres. 	
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Problem: initialization must be exact.  An approximate initialzation  would yield	

randome O(dx2) errors that would destroy the curvature computation. 	

	

Exact initialization is not available in Gerris. So we initialize on a much smaller	

subgrid (typicall 8 times smaller in each directions, so 512 more computations to do). 	
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Typically let the refinement decrease during iend=2-3 time steps. 	

	

This is extremely time consuming (hours): no time to initialize several droplets.	

	

To accelerate the initialization, Ruben Scarodvelli and Simone Bna wrote	

a VOF initialization library called « Vofi » available at the same web site	

as parissimulator: http://parissimulator.sf.net 	
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The continuous, 	

piecewise linear	

polygonal line in 2D	

or a polyhedron in 3D 	

obtained with elementary	

constructions can be very different	

from the exact surface with 	

some cells completely missed. 	
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Internals of the Vofi library (Bnã, S, S Manservisi, R 
Scardovelli, Ph. Yecko, and S Zaleski. Computers 
and Fluids, 2014, online, doi:10.1016/j.compfluid.
2014.04.010.)	
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Initialize the spheres and measure L1 and L2 norms of the	

errors (norms are computed by summing over all points of	

a given sphere and all random spheres, except for gerris where	

a single sphere was initialized because of the cost). 	

	

First show the results in	

3D for the simplified algorithm (no mied heights)	
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Then use the curvature method to find droplet oscillations. 	

	

Use a 3mm droplet of water in air. Large density ratio, 	

Laplace number La=216,000, density ratio r=1.2 10-3	


viscosity ratio m=0,017,  points per diameter D/dx = 19. 	

	

The capillary oscillation computation fails. 	
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However, reinstating the mixed heights, that is	

	

1) attempt to find nine heights of the same kind	

2) if not:  find mixed heights 	

(mixing height of x, y and z types). Avoid height that give almost the same 
point (points less than dx/2 of each other). If 6 heights found: fit the elliptic 
paraboloid. 	

3) If not working: find centroids (still rotating the coordinate system). Fit the 	

elliptic paraboloid	

4) cap the curvature to some maximum value. 	

	

yields worse results for the curvature but better results for theoscillations	
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Conclusion: mixed-heights are inaccurate,	

 but give better capillary oscillations. 	

	

Another interesting point is that stencils 7x3x3 are sufficient	

(9x3x3 is needed in the theory above).	
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Finally go back to the 2D with mixed heights.	
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The advantage of Paris over Gerris has disappeared !	
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With mixed	

	

even worse for L1 but better for L2	
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Conclusion: we still do not fully know what is the secret	

of Gerris.	
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The end	



