Hydrodynamics of Lakes and ecosystems

Jair REYES

Institut Jean le Rond d'Alembert - UPMC Doctoral Advisor: Maurice ROSSI

November 12, 2014

▲ □ ▶ < □ ▶ </p>

Introduction

The role of hydrodynamics on the dynamics of algae populations in lakes.

• What are the determining factors in the explosive growth of certain algae ?

This thesis is divided into two parts

- Analysis of the fluid dynamics in lakes (Presented here).
- Coupling biology models with hydrodynamics models

Content

- 1.- Comparison Hydrostatic and Nonhydrostatic model
- 2.- Sediment resuspension using GERRIS code.
- 2.a The model and its validations
- 2.b Example of sediment resuspension due to currents

2.c Example of sediment resuspension due to Internal Solitary Waves breaking

Equations and Boundary Conditions

Hydrodynamics of Lakes Physical Models

Hydrostatic model (FORTRAN Code):

- Model widely used in marine science
- Vertical momentum equation replaced by the hydrostatic approximation.
- Vertical velocity calculated from the continuity equation.
- Primitive equations solved by using sigma coordinates

Is the hydrostatic model correct near boundaries?

Equations and Boundary Conditions

Hydrodynamics of Lakes Physical Models

Nonhydrostatic model (GERRIS Code):

- Navier-Stokes equations
- Effective viscosity
- Surface: Rigid-Lid Approximation

We have compared the hydrostatic and nonhydrostatic model.

Equations and Boundary Conditions

Hydrodynamics of Lakes

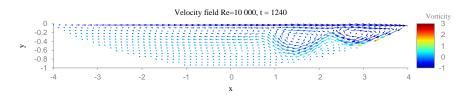
Different simplified topographies: flat and parabolic basins. We are interested in

- Structure of currents
- Shear on the bottom

Surface:
$$\left(\mu \frac{\partial u}{\partial z}, w\right) = (\tau_s, 0)$$

Bottom: No-slip condition

Different cases

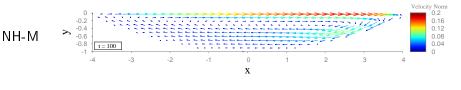

• Differents Reynolds numbers:
$$\operatorname{Re} = \frac{\rho[U][L]}{\mu} = \frac{\rho \tau_s H^2}{\mu^2}$$
.

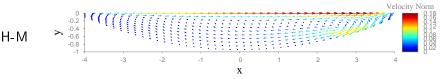
<i>H</i> [m]	$\mu \left[\frac{\text{kg}}{\text{ms}}\right]$	U_{wind} [$\frac{\mathrm{km}}{\mathrm{h}}$]	Re	Re_{\max}
10	1	3.2	100	24.0
		6.4	400	88.7
		10.3	1 000	198.5
		17.8	3 000	493.6
		32.5	10 000	1213.3

• With Remax as a Reynolds number based in the highest horizontal velocity umax.

э

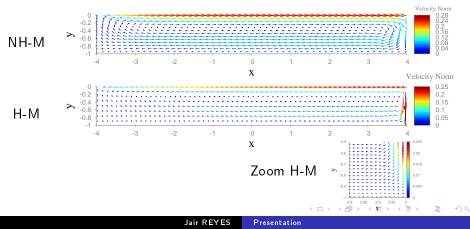
Unsteady flow



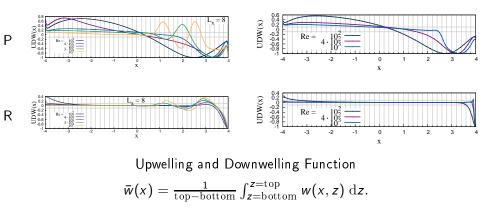

 $\mathsf{Video}\;\mathrm{Re}=10000$

< A

Steady velocity field


Steady velocity field corresponding to parabolic lake of $\mathrm{Re}=10^3$

Steady velocity field


Steady velocity field corresponding to rectangular lake of $\mathrm{Re}=4\cdot10^2$

Upwelling and downwelling regions

NH model

H model

Validation of sediment calculation Erosion of sediment in the lake

Modeling Sediment

Dimensionless sediment equation

$$\phi_t + \mathbf{u} \cdot \nabla \phi = \frac{1}{\text{ScRe}} \Delta \phi,$$
 (1)

with $Sc = \frac{\nu}{D_{\phi}}$

Dimensionless boundary conditions:

- Surface and walls: $\frac{\partial \phi}{\partial n} = 0$
- Bottom: Suspension and deposition depending on shear. $\frac{\partial \phi}{\partial n} = -[E_b(\tau_b) + D_b(\tau_b)\phi].$

where τ_b is the shear stress on the bottom

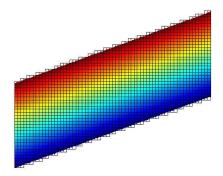
Validation of sediment calculation Erosion of sediment in the lake

< A

Modeling Sediment Bottom boundary condition

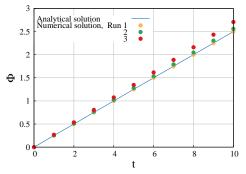
Erosion of Sediment:

$$E_b = \begin{cases} 0 & |\tau_b| < \tau_{ce} \\ \\ e_b \left(\frac{|\tau_b|}{\tau_{ce}} - 1\right) & |\tau_b| \ge \tau_{ce} \end{cases},$$


Deposition of Sediment:

$$D_b = \begin{cases} 0 & |\tau_b| > \tau_{cd} \\ \\ d_b \mathbf{n} \cdot \mathbf{e}_z \left(1 - \frac{\|\tau_b\|}{\tau_{cd}} \right) & |\tau_b| \le \tau_{cd} \end{cases},$$

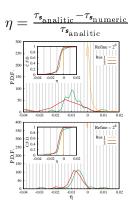
Validation of sediment calculation Erosion of sediment in the lake


Validation: Two dimensional Inclined Couette Flow

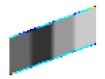
Differents angles $\theta = 0, 10, 20$

Validation of sediment calculation Erosion of sediment in the lake

2D Couette Flow Sediment computation


Sediment mass in the total volume

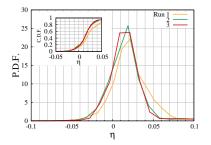
$$\Phi = \int \phi \, \mathrm{d}\mathcal{V} = \tau_{\mathsf{s}} t.$$


Validation of sediment calculation Erosion of sediment in the lake

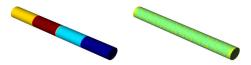
2D Couette Flow

PDF of relative error in shear computation:

$$\theta = 20$$
, Refine= 2^{6}

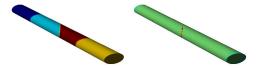


 $\theta = 20$, Refine= 2^8



Validation of sediment calculation Erosion of sediment in the lake

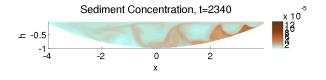
3D Poiseuille Flow



 $\theta \approx 0$, Refine=2⁸

 $\theta \approx 40$, Refine= 2^8

Errors located at the MPI boundaries



A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Validation of sediment calculation Erosion of sediment in the lake

< **11** → <

Erosion of sediment in the lake

Video $\operatorname{Re} = 10^5$

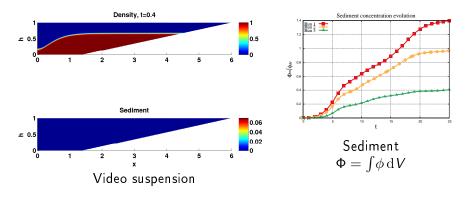
ISW Breaking

Internal solitary wave (ISW) modeling

- Momentum equation with Boussinesq approximation
- Advection-diffusion equation for temperature

Boundary conditions

• Surface: $\left(v, \frac{\partial u}{\partial x}, \frac{\partial \rho}{\partial y}\right) = (0, 0, 0);$ • Right wall: $\left(u, \frac{\partial v}{\partial y}, \frac{\partial \rho}{\partial x}\right) = (0, 0, 0);$ • Bottom: $\left(u, v, \frac{\partial \rho}{\partial n}\right) = (0, 0, 0).$



G. Rickard, J. Callaghan, S. Popinet, OMJ (2009).

ISW Breaking

ISW Breaking

Suspension of sediment du to ISW breaking and run-up

< A

Conclusion

- Comparison of the Hydrostatic and Nonhydrostatic Models
- Sediment resuspension du to currents in the lake.
- Sediment resuspension du to ISW breaking and run-up.