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Introdution

The role of hydrodynamis on the dynamis of algae populations in

lakes.

What are the determining fators in the explosive growth of

ertain algae ?

This thesis is divided into two parts

Analysis of the �uid dynamis in lakes (Presented here).

Coupling biology models with hydrodynamis models

Jair REYES Presentation



Introdution

Physial models

Comparison between H and N-H models

Modeling Sediment

Internal solitary wave

Conlusions

Content

1.- Comparison Hydrostati and Nonhydrostati model

2.- Sediment resuspension using GERRIS ode.

2.a The model and its validations

2.b Example of sediment resuspension due to urrents

2. Example of sediment resuspension due to Internal Solitary

Waves breaking
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Equations and Boundary Conditions

Hydrodynamis of Lakes

Physial Models

Hydrostati model (FORTRAN Code):

Model widely used in marine siene

Vertial momentum equation replaed by the hydrostati

approximation.

Vertial veloity alulated from the ontinuity equation.

Primitive equations solved by using sigma oordinates

Is the hydrostati model orret near boundaries?
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Equations and Boundary Conditions

Hydrodynamis of Lakes

Physial Models

Nonhydrostati model (GERRIS Code):

Navier-Stokes equations

E�etive visosity

Surfae: Rigid-Lid Approximation

We have ompared the hydrostati and nonhydrostati model.
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Equations and Boundary Conditions

Hydrodynamis of Lakes

Di�erent simpli�ed topographies: �at and paraboli basins.

We are interested in

Struture of urrents

Shear on the bottom

Surfae:
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Bottom: No-slip ondition
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Di�erent ases

Di�erents Reynolds numbers: Re = ρ[U][L]
µ

= ρτ
s

H

2

µ2
.

H [m℄ µ [

kg

ms

℄ U

wind

[

km

h

℄ Re Re

max

10 1

3.2 100 24.0

6.4 400 88.7

10.3 1 000 198.5

17.8 3 000 493.6

32.5 10 000 1213.3

With Re

max

as a Reynolds number based in the highest

horizontal veloity u

max

.
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Unsteady �ow
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Steady veloity �eld

Steady veloity �eld orresponding to paraboli lake of Re = 10

3
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Steady veloity �eld

Steady veloity �eld orresponding to retangular lake of

Re = 4 · 102
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Upwelling and downwelling regions

NH model H model

P

R
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w̄(x) = 1

top−bottom

∫

z=top
z=bottom w(x , z) dz .

Jair REYES Presentation



Introdution

Physial models

Comparison between H and N-H models

Modeling Sediment

Internal solitary wave

Conlusions

Validation of sediment alulation

Erosion of sediment in the lake

Modeling Sediment

Dimensionless sediment equation

φ
t

+ u ·∇φ =
1

SRe

∆φ, (1)

with S = ν
Dφ

Dimensionless boundary onditions:

Surfae and walls:

∂φ
∂n

= 0

Bottom: Suspension and deposition depending on shear.

∂φ
∂n

= −[E
b

(τ
b

) + D

b

(τ
b

)φ].

where τ
b

is the shear stress on the bottom
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Validation of sediment alulation

Erosion of sediment in the lake

Modeling Sediment

Bottom boundary ondition

Erosion of Sediment:
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Validation of sediment alulation

Erosion of sediment in the lake

Validation: Two dimensional Inlined Couette Flow

Di�erents angles θ = 0,10, 20
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Validation of sediment alulation

Erosion of sediment in the lake

2D Couette Flow

Sediment omputation

Sediment mass in the total volume

Φ =
∫

φ dV = τ
s

t.
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Validation of sediment alulation

Erosion of sediment in the lake

2D Couette Flow

θ = 20, Re�ne=2
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PDF of relative error in shear omputation:
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3D Poiseuille Flow

θ ≈ 0, Re�ne=2
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θ ≈ 40, Re�ne=2
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Erosion of sediment in the lake

Video Re = 10
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ISW Breaking

Internal solitary wave (ISW) modeling

1

Momentum equation with Boussinesq approximation

2

Advetion-di�usion equation for temperature

Boundary onditions

Surfae:

(

v , ∂u
∂x
, ∂ρ
∂y

)

= (0, 0, 0);

Right wall:

(

u, ∂v
∂y

, ∂ρ
∂x

)

= (0, 0, 0);

Bottom:

(

u, v ,
∂ρ
∂n

)

= (0, 0, 0).

G. Rikard,J. Callaghan, S. Popinet, OMJ (2009).
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ISW Breaking

Suspension of sediment du to ISW breaking and run-up

Video suspension
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Conlusion

Comparison of the Hydrostati and Nonhydrostati Models

Sediment resuspension du to urrents in the lake.

Sediment resuspension du to ISW breaking and run-up.
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