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• What is a granular media?!

• size > 100µm!

• grains of sand, small rocks, glass 
beads, animal feed pellet, 
medicines, cereals, wheat, sugar, 
rice...!

• 50 % of the traded products

BRUNO ANDREOTTI,  
YOËL FORTERRE ET 
OLIVIER POULIQUEN

Sable, riz, sucre, neige, ciment... Bien qu’omniprésents dans notre vie quotidienne, les milieux granulaires 
continuent de défier l’industriel, de fasciner le chercheur et d’intriguer l’amateur. Pourquoi le sable 
est-il tantôt assez solide pour former un tas ou soutenir le poids d’un immeuble, et coule-t-il tantôt 
comme un liquide, lors d’une avalanche ou dans un sablier ? Pourquoi est-il difficile de compacter ou 
de mélanger des grains ? Comment le vent sculpte-t-il les rides de sable sur la plage et les dunes 
dans le désert ? Longtemps l’apanage des ingénieurs et des géologues, l’étude des milieux granulaires 
constitue aujourd’hui un sujet de recherche actif à la frontière de nombreuses disciplines – physique, 
mécanique, sciences  de l’’environnement, géophysique et sciences de l’ingénieur.
Cet ouvrage s’attache à dresser l’état des connaissances sur les milieux granulaires et à présenter 
les avancées récentes du domaine. Issu de cours de Master et d’’école d’’ingénieur, il s’’adresse aux 
étudiants des trois cycles universitaires, aux chercheurs et aux ingénieurs, qui trouveront là une pré-
sentation des  propriétés fondamentales des milieux granulaires (interactions entre grains, comporte-
ment solide, liquide et gazeux, couplage avec un fluide, applications au transport de sédiments et à 
la formation de structures géologiques).  La description des phénomènes mêle arguments qualitatifs 
et formels, permettant de pénétrer des domaines aussi variés que l’’élasticité, la plasticité, la physique 
statistique, la mécanique des fluides ou la géomorphologie. De nombreux encadrés permettent d’appro-
fondir certains phénomènes et illustrent les propriétés singulières des milieux granulaires au travers de 
leurs manifestations les plus spectaculaires (chant des dunes, sables mouvants, avalanches de neige…)
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spoil tip - Australia
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spoil tip (boney pile, gob pile, bing or pit heap), «terril» in french
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avalanche : le «Frank Slide» 1907
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http://books.google.fr/books?id=HY6Z5od4-E4C&pg=PA49&dq=granular
+flow&hl=fr&ei=lamtTaa_NYyVOoToldcL&sa=X&oi=book_result&ct=result&resnum=10&ved=0CFkQ6AEwCTgK#v=onepage&q&f=true
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Example of Bingham Collapse
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Non Newtonian flows

Gerris

F. Dufour & G. Pijaudier-Cabot,  , Int. J. Numer. Anal. Meth. Geomech. (2005)!



Example of Bingham Collapse
Non Newtonian flows

Gerris

IV. SCALING LAWS FOR THE SLUMPING AND SPREADING

In the analysis of slumping experiments, it is common practice to use the initial height
of the system (H0) as characteristic length scale against which all other quantities are nor-
malized [Pashias et al. (1996); Schowalter and Christensen (1998); Davidson et al.
(2000); Piau (2005); Roussel and Coussot (2005)]. However, the initial height is not the
only length scale affecting the deformation of the column: As demonstrated in Sader and
Davidson (2005), its initial radius R0 plays a major role. The initial height sets the value
of the initial compressional stress to be compared with the typical length scale related to
the yield stress: Ly ¼ sy=qg. To single out these two aspects, and prompted by earlier
works on slumping of granular matter [Lube et al. (2004); Lajeunesse et al. (2004);
Balmforth and Kerswell (2004); Zenit (2005); Staron and Hinch (2005)], we will use the
initial radius R0 (rather than the initial height H0) to normalize the slumping and the
spreading of the column. Hence, we search for scaling laws relating ðR# R0Þ=R0 and
ðH0 # HÞ=R0 to !sy ¼ sy=qgR0 and !g ¼ g=qg1=2R0

3=2, and to the aspect ratio a.

A. A simple prediction based on equilibrium shape

A simple prediction for the final shape of the slumping material can be obtained by
assuming that the final state results from the equilibrium between the pressure induced by
the variations of the deposit height and the yield stress [Pashias et al. (1996); Roussel
et al. (2005); Roussel and Coussot (2005)]

qghðrÞ @hðrÞ
@r
¼ sy; (2)

and by supposing, moreover, that the final shape can be approximated by a cone (or trian-
gle in 2D)

hðrÞ ’ H

R
ðR# rÞ: (3)

Integrating Eq. (2) between 0 and R gives immediately

FIG. 6. Snapshots of the slumping shown in Fig. 2 (a¼ 5, sy=qgR0 ¼ 0:33, and g=qg1=2R3=2
0 ¼ 0:86), at

t=
ffiffiffiffiffiffiffiffiffiffiffi
H0=g

p
¼ 0, 0.85, 1.70, and in the final state, showing inner deformations using VOF tracers.
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corresponding time evolution of the position of the front in the course of time rðtÞ # R0

and of the slump H0 # hðtÞ (normalized by R0) is displayed in Fig. 4. During the flow, the
upper-right edge of the column is preserved (due to locally low compressional stress); in
the case of very large a, it can be advected downstream. Closer inspection of the state of
the spreading layer reveals the existence of areas of higher viscosities (Fig. 5): A “dead”
corner is located at the basis of the initial column, and spreads sideways while the flow
decelerates and stops; small patches of higher viscosity also appear at the surface of the
spreading layer. The preserved edge forms one of them. The inner deformations are made
visible in Fig. 6 by mean of passive tracers; we observe maximum stretching in the vicin-
ity of the bottom and in the inner part of the column.

As expected, the typical evolution described above is sensitive to both the rheological
parameters and the initial aspect ratio. Larger values of the plastic viscosity g induce
smaller run-outs but larger flow durations due to the increase of the time scale related to
viscous deformation. Through a different mechanism, larger values of the yield stress
induce smaller run-outs and smaller slumping times, the material being quickly frozen in
a stress state below the yielding value. Finally, a dependence on the initial aspect ratio a,
rather than on H0 or R0 alone, is observed, as previously stressed in Sader and Davidson
(2005). In particular, for a small initial aspect ratio, depending on the value of the yield
stress, no flow may occur at all. All these points are investigated in detail in Sec. IV.

FIG. 4. Evolution of the normalized position of the front ðr # R0Þ=R0 (or run-out) and of the top of the column
ðH0 # hÞ=R0 (or slump) as a function of the normalized time !t ¼ t=

ffiffiffiffiffiffiffiffiffiffiffi
H0=g

p
for the system displayed in Fig. 2.

FIG. 5. Snapshot showing areas of maximum viscosity close to flow arrest.

1270 STARON et al.

Downloaded 03 Jul 2013 to 131.111.184.26. Redistribution subject to SOR license or copyright; see http://www.journalofrheology.org/masthead

Staron et al J. Rheol 2013



Example of Bingham Collapse
Basilisk

Non Newtonian flows



E. Lajeunesse A. Mangeney-Castelnau and J. P. Vilotte PoF 2005

granulars are fluids and solids



342 The European Physical Journal E

in the different configurations? Are there underlying com-
mon physical phenomena controlling flow properties in the
different geometries? As a result, we expect to identify
simple and basic features that could help in developing
future model for dense granular flows.

Let us emphasise that this collective work is not a re-
view. New results are presented and the paper does not
pretend to be exhaustive. First, the paper focus only on
steady uniform flows of slightly polydispersed grains, leav-
ing aside very important questions such as avalanche trig-
gering, intermittent flows or segregation. Second, since the
data presented here come from the research group GDR
MiDi and collaborators, many important contributions are
not included. We refer to them in the references. However,
the huge activity in the domain makes the exercise diffi-
cult. We take refuge behind this excuse for all the contri-
butions that have been omitted.

2 Six different configurations

Dense granular flows are mainly studied in six different
configurations (Fig. 1), where a simple shear is achieved
and rheological properties can be measured. These geome-
tries are divided in two families: confined and free surface
flows.

The confined flows are the plane shear geometry
(Fig. 1a) where a shear is applied due to the motion of
one wall, the annular shear (Fig. 1b) where the material
confined in between two cylinders is sheared by the ro-
tation of the inner cylinder and the vertical-chute flow
configuration (Fig. 1c) where material flows due to the
gravity in between two vertical rough walls. Free surface
flows are flow of granular material on a rough inclined
plane (Fig. 1d), flow at the surface of a pile (Fig. 1e)
and flow in a rotating drum (Fig. 1f). The driving force
is in these last three cases the gravity. In the following,
we consider successively the six configurations. The data
comes from different experiments and numerical simula-
tions briefly described in a table at the beginning of each
section. We report for each of them the flowing threshold,
the kinematic properties (velocity V (y), volume fraction
Φ(y) and velocity fluctuation δV 2(y) profiles) and the rhe-
ological behaviour, before discussing the influence of the
various experimental or numerical parameters. Both the
notations and the dimensionless quantities naturally used
to present the results are given in Appendix A.

3 Plane shear flow

3.1 Set-up

In the aim of studying flow rheology, the plane shear
(Fig. 2a) is conceptually the simplest geometry one natu-
rally thinks of. The flow is obtained between two parallel
rough walls, a distance L apart and moving at the rela-
tive velocity Vw. In the following, we note γ̇w = Vw/L the
mean shear rate. In this configuration, the stress distribu-
tion is uniform inside the sheared layer. However, because

g

g g

(c)(a) (b)

(d) (e) (f)

Fig. 1. The six configurations of granular flows: (a) plane
shear, (b) annular shear, (c) vertical-chute flows, (d) inclined
plane, (e) heap flow, (f) rotating drum.

of gravity, this homogeneous state is not achieved in exist-
ing experiments [15,16] but is obtained in discrete parti-
cle simulations. Most of the results found in the literature
are obtained imposing the wall velocity and measuring the
shear stress [17–21]. Some are carried out controlling the
shear force applied to the moving wall in order to study
the flow thresholds [22].

In the following, we present results of two-dimensional
discrete particle simulations where Vw is imposed and the
number of grains (size d and mass m) within the cell is
fixed (periodic boundary conditions are used along the
shear direction). The data are summarised in Table 1. In
one case the volume —the cell width L— and thereby the
density ρ —or the volume fraction Φ— are controlled and
the pressure P is measured, while in the other case the
pressure is controlled and the density is measured. Once
the inter-particle contact laws are fixed, the simulations
depend on two parameters: the wall velocity Vw and the
normal stress P or the density ρ. This define a single di-
mensionless number describing the relative importance of
inertia and confining stresses,

I =
γ̇wd√
P/ρ

. (1)

Both simulations are performed in the limit of rigid grains,
so that the macroscopic timescale L/Vw is much larger
than the microscopic timescales i.e. the elastic and the
dissipative ones. The inter-particle friction coefficient µp

is null when not specified. The roughness of the walls is
made of glued grains similar to the flowing grains.

GDR MiDi EPJ E 04

• Looking for a continuum description!

• Lot of recent experiments in simple configurations: 
shear/ inclined plane, !

   with model material (glass beads, sand…)!

• Simulations with Contact Dynamics!

   (disks, polygona, spheres)



• Defining a «viscosity»!

• Implement it in the Navier Stokes solver Gerris!

• Test on exact  «Bagnold» avalanche solution!

• Test on granular collapse and hourglass

• Looking for a continuum description!

• Lot of recent experiments in simple configurations: 
shear/ inclined plane, !

   with model material (glass beads, sand…)!

• Simulations with Contact Dynamics!

   (disks, polygona, spheres)



constitutive law?
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The µ(I)-rheology
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Figure 1. (a) Ratio of shear to normal stress τ/P as a function of the
dimensionless shear rate I = ud/h

√
P/ρ in simulations of plane shear. (b) τ/P

as a function of I = ud/h
√

gh estimated at the base for flow down inclined planes.
(c) Sketch of the dependence of the friction coefficient µ with dimensionless shear
rate I = γ̇d/

√
P/ρ.

stays trapped is tmean − tmicro, we can compute the time averaged volume fraction φ:

φ =
tmicroφmin + (tmean − tmicro)φmax

tmean
. (4)

It follows that the volume fraction varies linearly with the dimensionless shear rate
I = tmicro/tmean:

φ = φmax − (φmax − φmin)I. (5)

Typical values are φmax = 0.6 and φmin = 0.5.
Equations (3) and (5) represent constitutive equations that can be applied to predict

different flow configurations. In the next section we discuss the predictions made with
this approach and compare them with experimental observations.

3. Different flow configurations

3.1. Plane shear

The first important test of the rheology concerns simple plane shear without gravity.
The plane shear configuration is shown in figure 2(a). A granular layer of thickness h

doi:10.1088/1742-5468/2006/07/P07020 4

µ1 � 0.32 (µ2 � µ1) � 0.23 I0 � 0.3 µ1
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1.1. LE MODÈLE

y [m] les coordonnées spatiales et t [s] le temps, voir la figure 1.1). Ce système s’écrit sous
la forme ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂th + ∂x (hu) + ∂y (hv) = P − I

∂t (hu) + ∂x
(
hu2 + gh2/2

)
+ ∂y (huv) = gh(S0x − Sf x)

∂t (hv) + ∂x (huv) + ∂y
(
hv2 + gh2/2

)
= gh(S0y − Sf y)

, (1.1)

avec S0x = −∂xz(x, y) et S0y = −∂yz(x, y),

où
– g = 9.81 m/s2 est la constante de gravité,
– P (t, x, y) [m/s] l’intensité de la pluie,
– I(t, x, y) [m/s] le taux d’infiltration de l’eau dans le sol,

– S⃗f =
(
Sf x, Sf y

)
∈ R2 le terme de frottement qui dépend de la loi de frottement

choisie (voir le chapitre 3),
– z(x, y) [m] la topographie.

Enfin, l’opposé de S0x (respectivement de S0y) est un nombre sans dimension qui représente
la variation de la topographie selon x (respectivement selon y). Il est plus communément
appelé pente selon x (respectivement selon y).

Fig. 1.2: Adhémar Jean-Claude Barré de Saint-Venant (extrait de Debauve [1893, p.432]).

Le système de Saint-Venant a été introduit dans un cadre unidimensionnel par l’in-
génieur des Ponts et Chaussées Adhémar Jean-Claude Barré de Saint-Venant (figure 1.2)
dans un Compte Rendu à l’Académie des Sciences (voir de Saint Venant [1871]). Pour
décrire l’écoulement de l’eau dans un canal dont la section est rectangulaire et le fond plat
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y [m] les coordonnées spatiales et t [s] le temps, voir la figure 1.1). Ce système s’écrit sous
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, (1.1)

avec S0x = −∂xz(x, y) et S0y = −∂yz(x, y),

où
– g = 9.81 m/s2 est la constante de gravité,
– P (t, x, y) [m/s] l’intensité de la pluie,
– I(t, x, y) [m/s] le taux d’infiltration de l’eau dans le sol,

– S⃗f =
(
Sf x, Sf y

)
∈ R2 le terme de frottement qui dépend de la loi de frottement

choisie (voir le chapitre 3),
– z(x, y) [m] la topographie.

Enfin, l’opposé de S0x (respectivement de S0y) est un nombre sans dimension qui représente
la variation de la topographie selon x (respectivement selon y). Il est plus communément
appelé pente selon x (respectivement selon y).

Fig. 1.2: Adhémar Jean-Claude Barré de Saint-Venant (extrait de Debauve [1893, p.432]).

Le système de Saint-Venant a été introduit dans un cadre unidimensionnel par l’in-
génieur des Ponts et Chaussées Adhémar Jean-Claude Barré de Saint-Venant (figure 1.2)
dans un Compte Rendu à l’Académie des Sciences (voir de Saint Venant [1871]). Pour
décrire l’écoulement de l’eau dans un canal dont la section est rectangulaire et le fond plat
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hypothesis2b(Table1,anisotropywith4valuesofK)iscon-
sidered,theKvalueindownslopedirectionisthesamethanin
case2a,andapproximatelythesameusedincaseofisotropy,
butincross-slopedirectionitispossibletohave
K¼Kact¼0.32orK¼Kpass¼1.49.Thiscanmodifythe
widthofthemassalongthechute.
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Alongthechute,asincaseoft¼0.51s,incross-slopedi-
rectiontherearebothactiveandpassivecellsbutelements
passiveinyandactiveinxareinprevalence.Toconsiderin

Fig.17.Thevalueofthecross-slopeearthpressurecoefficient(fromGray
etal.,1999).

Fig.18.Simultaneouslongitudinalandlateralelongation(a)andlongitudinal
andlateralcontraction(b).

Fig.19.Simultaneouslongitudinalelongationandlateralcontraction(a)and
longitudinalcontractionandlateralelongation(b).

Fig.20.Frankslide.
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Figure 5. A comparison between the dimensionless actual avalanche (solid) boundary in experiment
V05 (vestolen) and the computed (dashed) edge is plotted at a sequence of time steps in projected
curvilinear coordinates (x, y). The vertical dashed lines at x = 17.5 and x = 21.5 indicate the position
of the transition zone, with the 40� inclined channel to the left and the horizontal run-out plane
to the right. In the bottom right panel the thickness distribution of the experimental avalanche is
illustrated using 0.1 unit contours.

experiment is shown in figure 2. This evolution is typical of all three experiments
described in this paper. The granular material is released from the cap on the inclined
section of the chute and rapidly spreads out in the downhill direction, so that when
the avalanche front reaches the run-out plane the tail has barely moved from its initial
position. As the avalanche flows through the transition zone the lateral confinement
ceases and the granular material spreads out laterally. This produces a very strong
nose and tail structure, in which the nose is spreading and the tail is being channelized
by the topography.

A single-image photogrammetric method has been used to extract the position of
the avalanche boundary from a series of these photographs. A comparison of the

Saint-Venant Savage Hutter Gerris WIELAND, J. M. N. T. GRAY AND K. HUTTER 1999
Marina Pirulli, Marie-Odile Bristeau Anne Mangeney, Claudio Scavia  2006



Basilisk 
 ▪        
Basiliscus basiliscus is the latin name of the extraordinary 
Jesus Christ lizard, famous for its ability to run on the surface 
of water, a characteristic it shares with another well-known 
water-walker Gerris lacustris. 

Shallow Water Full 2D

http://basilisk.fr/Front%20Page
http://en.wikipedia.org/wiki/Common_basilisk
http://en.wikipedia.org/wiki/Gerris_lacustris


Shallow water front Pouliquen 99 experiment

averaged equations for flow down inclined planes starting
from the 3D conservation equations can be found in Ref. 13.

The last term in Eq. ~2! is usually simplified as follows.
Using the shallowness assumption, the vertical normal pres-
sure is given by syy5rgy . Assuming that the two normal
stresses are proportional, i.e., sxx5ksyy , the integral in Eq.
~2! can be computed and gives, after simplification, the fol-
lowing equation for the thickness:

tan~u!2m~h ,u`!2k
dh
dx 50. ~3!

The first term in this equation represents the driven grav-
ity force. The second term is the friction force exerted at the
rough bed. This term is crucial as it contains the information
about the rheological behavior of granular flows. Savage and
Hutter13 in their model have simply chosen for m(h ,u) a
constant friction coefficient. This assumption seems to be

valid for high inclination which indeed corresponds to their
experimental conditions. However, for moderate inclination
as in our problem, the constant friction coefficient approxi-
mation is no longer valid as it does not predict the existence
of steady uniform flow. In order to describe the shape of the
front in this regime we thus have introduced for m(h ,u) in
Eq. ~3! the empirical rheology given by Eq. ~1!.

The third term in Eq. ~3! represents the spreading force
related to the gradient of thickness. The coefficient of pro-
portionality k between the two normal stresses is unfortu-
nately unknown for the dense granular flow of interest here.
In a very dilute regime corresponding to the kinetic regime,
the pressure is isotropic as in fluids and k is equal to 1.
Takahashi12 and Patton et al.1 have used this assumption. On
the other hand, in the quasi static regime for very slow de-
formations, k can be related to the internal friction of the
material through a Mohr-Coulomb plasticity theory as shown
by Savage, Hutter and co-workers.13,14 However, in the in-
termediate regime k is unknown. In this paper the two dif-
ferent values of k are tested when comparing the theoretical
predictions with the experiments. We will successively use
k51, and k5 (11sin2u1)/(12sin2u1) corresponding to the

FIG. 1. ~a! Front profiles measured 50 cm from the outlet ~circles! and once
it has propagated 1.5 m down the slope ~filled circles!. ~b! Position of the
front with time showing the constant propagation velocity. System of beads
1, u524.5°, h`56.7 mm.

FIG. 2. ~a! Picture of the front illuminated by the laser sheet for material 4,
u521°, h`59.5 mm. ~b! Forces on an elementary material slice.

FIG. 3. Front profiles: comparison between experi-
ments for three values of h` ~symbols! and theory
@solid line: k51; dashed line: k5 (11sin2u1)/(1
2sin2u1# for system of beads 2 and 4 ~see Ref. 9 for the
characteristics of the beads!.

1957Phys. Fluids, Vol. 11, No. 7, July 1999 Shape of granular fronts down rough inclined planes
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Figure 3. Comparison between the non-dimensional front thickness h for the new depth-averaged

viscous model (dashed line) and Forterre’s (2006) depth-averaged viscous model (solid line) in

the moving coordinate ⇠ and for parameters ⇣
1

= 20.9�, ⇣ = 29� and ⇣
2

= 32.76�. The new model

has exactly the same solution as the inviscid case (Pouliquen 1999b; Gray & Ancey 2009) with

a well defined front and a grain free region for ⇠ > 0. Conversely Forterre’s (2006) model does

not allow grain free regions, as the inset diagram shows, and the shape of the front is sensitively

dependent on the precise way in which h �! 0 as ⇠ �! 1. In the case illustrated here the

exponential solution ✏ exp(r⇠), for ⇠ > 0 with r = �1 and ✏ = 10�3, is matched to a numerical

solution for Fr
0

= 1.02 and RF = 113.18, in the region ⇠ < 0, at ⇠ = 0.

Conversely, the front problem for Forterre’s (2006) depth-averaged rheology is

a↵ected by the viscous term. Even though mass balance still implies that if h = 0

at the front then ū = u
F

everywhere, the viscous term involves the gradient of

hū, which is not constant. Assuming that far upstream there is steady-uniform

flow, then ū is equal to the steady-uniform velocity, ū
0

, everywhere. It follows that

for shape factor � = 1 and flat basal topography, the scalings (6.8) imply the

non-dimensional depth-averaged momentum balance (5.5) in the moving frame is

h
dh

d⇠
= h(tan ⇣

2

� tan ⇣
1

)

✓
1

1 + �
� 1

1 + �h3/2

◆
+

Fr2
0

R
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d

d⇠

✓
1

h

dh

d⇠

◆
, (6.10)

where the equivalent of the Reynolds number for this rheology is

R
F

=
h2

0

⌫
F

. (6.11)
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Dynamic refinement using quadtrees

- Gerris is a finite volume code by Stéphane Popinet!
one part of the code is a Navier Stokes solver 

- automatic mesh adaptation

 - free on sourceforge 

- Volume Of Fluid method for two phase flows



multigrid solver for Laplacien of pressure

6 P.-Y. Lagrée, L. Staron and S. Popinet

u(H+), we obtain the velocity profile.
In practice, we solve two ordinary di⇥erential equations (using a shooting method with
Runge–Kutta di⇥erentiation), and we determine using Newton iterations the value of
⇤0 which allows the velocity profiles in 0 < y < H and in H < y < 2H to satisfy the
condition u(H�)� u(H+) = 0.
Figure 2 displays examples of computation of the velocity profile in 0 < y < H and in
H < y < 2H for di⇥erent values of the viscosity �f and density ⇥f of the upper fluid.
Non-dimensional velocity u =

⇤
gHū and depth y = Hȳ are used. We assume 25 grains

across the granular layer i.e. d̄ = d/H = 1/25. The influence of the upper fluid on the
granular flow is visible; in particular, the upper fluid can decelerate the granular flow
su⇧ciently to create a zone of constant velocity close to the interface (a plug flow). Note
however that in the limit of small density ⇥f and viscosity �f , the Bagnold solution for
the velocity profile in the granular flow is recovered.

3. Implementing the viscosity in the Gerris flow solver
3.1. The Gerris flow solver

Gerris is an open-source solver for the solution of incompressible fluid motion using the
finite-volume approach (Popinet 2003, 2009). Gerris uses the Volume-of-Fluid (VOF)
method to describe variable density two-phase flows. In this method the Navier–Stokes
equations are written as

� · u = 0,

⇥
�

⇤u
⇤t + u · �u

⇥
= ��p + � · (2�D),

⇤c
⇤t + � · (cu) = 0,

⇥ = c⇥1 + (1� c)⇥2,

� = c�1 + (1� c)�2,

where the volume fraction c(x, y, t) enables the tracking of the position of the interface.
D is the deformation tensor (�u+�uT )/2. Gerris uses a second-order staggered-in-time
discretisation combined with a time-splitting projection method. This gives the following
time-stepping scheme

c
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2
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�t + � · (cnun) = 0,
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2
��pn� 1

2
), (3.2)

� · un+1 = 0. (3.3)

Combining equations (3.2) and (3.3) of the above set results in the following Poisson
equation
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2

�pn+ 1
2

⌃
= � ·
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u⇥ +
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The momentum equation (3.1) can be reorganised as
⇥n+ 1

2
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2
D⇥) = ⇥n+ 1

2
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, (3.5)

where the velocity advection term un+ 1
2

· �un+ 1
2

is estimated by means of the Bell-
Colella-Glaz second-order unsplit upwind scheme (Popinet 2003; Bell et al. 1989). Note

6 P.-Y. Lagrée, L. Staron and S. Popinet

u(H+), we obtain the velocity profile.
In practice, we solve two ordinary di⇥erential equations (using a shooting method with
Runge–Kutta di⇥erentiation), and we determine using Newton iterations the value of
⇤0 which allows the velocity profiles in 0 < y < H and in H < y < 2H to satisfy the
condition u(H�)� u(H+) = 0.
Figure 2 displays examples of computation of the velocity profile in 0 < y < H and in
H < y < 2H for di⇥erent values of the viscosity �f and density ⇥f of the upper fluid.
Non-dimensional velocity u =

⇤
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Test of the code: «Bagnold» avalanche

kind of Nusselt  film solution!
“Half Poiseuille”
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L0

L�H�

H0

t = 0

t =�

aspect ratio a = H0/R0 = H0/L0

The sand pit problem: quickly remove the bucket of sand



a=0.37

 Contact Dynamic 
simulation Lydie Staron

Collapse of columns
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Collapse of columns
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Basilisk 
 ▪        
Basiliscus basiliscus is the latin name of the extraordinary 
Jesus Christ lizard, famous for its ability to run on the surface 
of water, a characteristic it shares with another well-known 
water-walker Gerris lacustris. 

Full 2D

http://basilisk.fr/Front%20Page
http://en.wikipedia.org/wiki/Common_basilisk
http://en.wikipedia.org/wiki/Gerris_lacustris
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at the tip, a=6.6 t=1.33 2 2.66

Collapse of columns simulation Gerris µ(I)

DCM vs Gerris µ(I)
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These figures can be reproduced using lydie/0.9/tas.gfs and lydie/9.1/tas.gfs. We
should also do this better using Lydie’s results directly.

These simulations were repeated for a ranging from 0.25 to 60. In order to estimate the
influence of numerical integration errors, the spatial resolution was also varied from 32/29 to 32/
212. Figure 7 illustrates the evolution of the normalised final deposit extent as a function of
aspect ratio a. Well-defined power law dependencies are observed with exponents of 1 and 2/3
respectively. The transition between the two regimes occurs for a ≈ 7. This is a larger aspect
ratio than that observed in experiments or discrete-grain simulations (a≈ 2). Recovering a tran-
sition for smaller a would require either a larger prefactor for the linear regime or a smaller pref-
actor for the power-law regime. For example, while the prefactor of 3.5 for the power-law regime
is close to that of Staron and Hinch (2005) (3.25), the prefactor for the linear regime is only 1.85
compared to 2.5 for Staron and Hinch. This may suggest that the mobility of the tip of columns
is under-estimated by the continuum model which could be explained by the limitations dis-
cussed previously. Note also the good convergence of the results with spatial resolution.
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Figure 7. Normalised final deposit extent as a function of aspect ratio. The different sets of points cor-
respond to the spatial resolutions given in the legend. The points which are obvious outliers correspond
to simulations which were still running when I generated the figure. This figure can be reproduced using
the scaling.plot gnuplot script.

Figure 8 gives the evolution of the maximum thickness of the final deposit as a function of
the initial aspect ratio. Linear dependence is observed for a ! 0.65, a power law with an expo-
nent of ≈ 0.35 for 0.65 < a < 6 followed by saturation with a maximum at a ≈ 15. From a ≈ 32,
the maximum thickness of the deposit is not reached on the axis of lateral symmetry of the
column anymore but in the deposited “wave” formed toward the front of the flow. The thickness
on the axis of lateral symmetry continue to decrease for a > 32 (Figure 9). These results are con-
sistent with Staron and Hinch (2005) although they did not discuss the transition for a > 32.
Note also that the maximum thickness of the deposit is much less dependent on the accurate
description/resolution of the dynamics of the avalanche tip than the horizontal extent.

Lydie, in your 2005 paper I don’t understand what H̄∞ is. Is it different from H0 R0/R∞? It

Collapse of columns simulation Gerris µ(I)

We recover the experimental scal ing 
[Lajeunesse et al. 04] and [Staron et al. 05]. 
Differences between the values of the 
prefactors are due to the difficulties to obtain 
the run out length: friction in the Navier Stokes 
code tends to underestimate it, whereas direct 
simulation shows that the tip is very gazeous, it 
can no longer explained by a continuum 
mechanic description.

Normal ised final deposit 
extent as a function of aspect 
ratio a. !
Wel l -defined power l aw 
dependencies with exponents 
of 1 and 2/3 respectively.



a the granular mass spreads through avalanching of the
flanks, producing either truncated cone deposits for a
!0.74 !Fig. 3"a#$ or conical deposits for a"0.74 !Fig. 3"b#$.
A transition towards a different flow regime is observed
when a is increased. This second flow regime is illustrated in
Fig. 3"c#: upon release, the upper part of the granular mass
descends, conserving its shape while the foot of the pile
propagates along the channel. Along the deposit an inflection
point separates a steep sloped from a large, almost flat re-
gion.

Figure 4 shows the time evolution of the profiles of three
different granular heaps of the same initial aspect ratio a
=3.2 but obtained with different masses or bead sizes. The

profiles h"x , t# are scaled with respect to Li and the time
interval between two consecutive profiles is scaled with re-
spect to the free-fall time of the granular column #c=%Hi /g.
The three profiles are identical at each time. This observation
demonstrates that, for fixed granular material and substrate
properties, the flow dynamics and the final deposit morphol-
ogy do not depend on the volume of granular material re-
leased but only depend on a. The range of substrate and
material properties "including the bead size# explored in this
paper is too restricted to evaluate their influence. Note how-
ever that the observations of Lajeunesse et al.10 and Balm-
forth and Kerswell11 indicate that properties such as the bead

FIG. 2. Three sequences of images corresponding to
d=1.15 mm beads spreading in the semiaxisymmetric
setup. The first image of each sequence corresponds to
the moment where the gate is being lifted, the time
interval between the following images is $t=%Hi /g,
except for the last image taken at the very end of the
flow when the heap is at rest. "a# Regime 1 a=0.6, M
=100 g, Li=39 mm, $t=49 ms. "b# Regime 1 a=2.4,
M =400 g, Li=39 mm, $t=98 ms. "c# Regime 2 a
=3.6, M =600 g, Li=39 mm, $t=120 ms.

FIG. 3. Same as Fig. 2 but in the rectangular channel.
"a# Regime 1, a=0.6, M =470 g, Li=102 mm, $t
=80 ms. "b# Regime 1, a=2.4, M =560 g, Li=56 mm,
$t=117 ms. "c# Regime 2, a=16.7, M =170 g, Li
=10 mm, $t=130 ms.
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Hf

Li
! !a a " 0.7,

a1/3 a # 0.7,
"

$L

Li
! !a a " 3,

a2/3 a # 3.
"

Note that the power-law exponent of the runout observed in
our rectangular channel is identical to the one reported by
Balmforth and Kerswell11 for a narrow channel.

Let us first comment on the behavior of the runout dis-
played in Fig. 6#a$. Two different regimes are observed de-
pending on the range of a. For small a, namely a"3, $L /Li
increases linearly with a for both flow geometries. In other
words, the runout $L increases linearly with Hi, a result that
is easily obtained from dimensional analysis.9 It is also for
this range of a that shallow-water equations show good
agreement with the experimental data.13,14

For a#3, the scaled runout does not vary linearly with a
but follows a power law whose exponent depends on the
flow geometry as summarized above. Two different mecha-
nisms are likely to account for this crossover. First, vertical
acceleration, which is negligible at low a, becomes important

when a increases. Second, pressure gradients, which scale as
%0ga, are likely to be small compared to friction forces at
small a but become important at large a. The change of
power-law exponents observed for a%3 might therefore be
interpreted as the transition between small a flows dominated
by friction and large a flows where vertical acceleration and
pressure gradient effects become predominant. Note also that
the mass conservation expressions are different in the rect-
angular and the axisymmetric geometries, which may ac-
count for the different power-law exponents for large a.

The deposit height exhibits two different regimes char-
acterized by changes of power-law exponents depending on
the range of a &see Fig. 6#b$'. For a"0.7, all the data fall on
the same line independent of the flow geometry: Hf /Li%a.
This is of course a trivial consequence of the fact that Hf
=Hi for the truncated cone deposits observed in this range
of a.

For a#0.7, two different behaviors are observed de-
pending on the flow geometry. In the axisymmetric geom-
etry, the scaled deposit height roughly saturates at a value of
the order of 0.74.10 In the rectangular channel, it increases as
a1/3. Interestingly this latter result is recovered in two recent
2D numerical investigations of the collapse of a granular
column of disks using contact dynamics.16,17 The similarity
between the experiments and the numerical simulations #per-
formed without a wall$ strongly suggests that the differences
between the evolution of Hf /Li in the axisymmetric geom-
etry and that in the rectangular channel are not an experimen-
tal artifact due to the friction at the wall of the rectangular
channel but have their origin in the geometry itself.

No model has yet provided a fully satisfactory explana-
tion of the slumping dynamics that has revealed the physical
origin of the different power-law exponents reported above.
This is what motivates the investigation of the internal flow
structure reported in the next section.

IV. INTERNAL FLOW STRUCTURE

We used two different tools in order to probe the internal
structure of the slumping granular mass. First, the shape and
evolution of the flowing layer were investigated by calculat-
ing the intensity difference between two consecutive images.
The result is then thresholded so as to distinguish between
static regions, which appear as black pixels, and the flowing
layer, where the motion of the beads appears as white pixels.
In practice, one needs to evaluate the noise caused by light-
ing fluctuations or intrinsic vibrations of camera and appara-
tus. The intensity difference between two consecutive images
of the pile at rest shows that lighting fluctuations are negli-
gible compared to the signal generated by the flowing beads,
provided the time interval between the two images is larger
than about $t=5 ms. We chose to work with $t=10 ms,
which turned out to be long enough to achieve a good signal-
to-noise ratio, and small enough compared to the character-
istic slumping time scale &c. Typical sequences of image dif-
ferences observed for different initial aspect ratios a in both
flow geometries are displayed in Figs. 7 and 8.

We also measured the velocity field in the flowing layer
using a particle image velocimetry #PIV$ algorithm based on

FIG. 5. Scaled distance traveled by the pile foot &L#t$−Li' /Li as a function
of t /&c. #a$ a=0.6, M =470 g, Li=102 mm. #b$ a=2.4, M =560 g, Li
=56 mm. #c$ a=16.7, M =170 g, Li=10 mm.
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size, the granular material internal friction angle, or the sub-
strate roughness exert an influence on the spreading dynam-
ics.

The results in Fig. 4, together with dimensional analysis,
strongly suggest that !c is the characteristic time scale in our
experiments. To verify this, we compared the flow dynamics
for different values of a by tracking the position L!t" of the
front !or granular pile foot" in all experimental runs. The
results are illustrated in Fig. 5, where we display the normal-
ized distance traveled by the pile foot !L−Li" /Li as a func-
tion of the scaled time t /!c for three different values of a.
Interestingly, all runs exhibit the same time evolution regard-
less of the value of a. After a transient acceleration phase
lasting approximately 0.8!c, the foot of the heap moves at a
nearly constant spreading velocity V for about 2!c. Most of
the total distance traveled by the foot of the heap is covered
during this time interval. Finally, the flow front decelerates
and comes to rest in a time on the order of 0.6!c. The total
duration of the flow is therefore of the order of 3!c for all
values of a. The same behavior is observed in the semiaxi-
symmetric setup, which is consistent with the observations of
Lube et al.,9 who reported a total flow duration on the order
of a few multiples of !c for axisymmetric collapses.

B. Deposit morphology

The evolution of the deposit shape with a was quantita-
tively investigated by measuring the scaled deposit height
Hf /Li and the scaled runout length "L /Li= !Lf −Li" /Li,
where Hf and Lf are respectively the deposit height and
length. The results are plotted in Fig. 6. In order to compare
the scaling laws observed in the rectangular channel to these
observed in axisymmetric geometries, we have added the
data set for axisymmetric collapses from Lajeunesse et al.10

In both geometries and despite rather complex flow dynam-
ics, the scaled deposit height and runout collapse on quite
simple power-law curves summarized below:

• In the axisymmetric geometry:

Hf

Li
= # a a # 0.74,

0.74 a $ 0.74,
$

"L

Li
% #a a # 3,

a1/2 a $ 3.
$

• In the rectangular channel:

FIG. 4. Sequence of scaled profiles
h!x , t" /Li of three different granular
heaps of same initial aspect ratio a
=3.2 but obtained with different
masses or bead sizes. !a" t=0, !b" t
=0.5!c, !c" t=!c, !d" t=2!c, !e" t
=3!c, and !f" final deposit. The plain
line profiles correspond to M
=650 g, Li=5.3 cm, and d
=1.15 mm. The plain line with
circles profiles correspond to M
=650 g, Li=5.3 cm, and d=3 mm.
The dotted line profiles correspond
to M =162.5 g, Li=2.6 cm, and d
=1.15 mm. The different curves are
barely distinguishable.
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FIG. 6. Scaled runout !L /Li !a" and scaled deposit
height Hf /Li !b" as functions of a. Circles and triangles
correspond to experiments performed in the 2D channel
working respectively with glass beads of diameter d
=1.15 mm or d=3 mm. Crosses correspond to the data
set of axisymmetric collapses from Lajeunesse et al.
!Ref. 10".

FIG. 7. Sequence of successive image differences cor-
responding to experiments performed in the semiaxi-
symmetric setup. !a" a=0.6, Li=39 mm, M =100 g, and
d=1.15 mm: t=0.5"c, "c, 2"c, 3"c, 4"c, and 6"c. !b" a
=2.4, Li=39 mm, M =400 g, and d=1.15 mm: t=0.5"c,
"c, 2"c, 3"c, 3.5"c, and 4"c. !c" a=3.6, Li=39 mm, M
=600 g, and d=1.15 mm: t=0.5"c, "c, 2"c, 3"c, 3.5"c,
and 4"c.
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size, the granular material internal friction angle, or the sub-
strate roughness exert an influence on the spreading dynam-
ics.

The results in Fig. 4, together with dimensional analysis,
strongly suggest that !c is the characteristic time scale in our
experiments. To verify this, we compared the flow dynamics
for different values of a by tracking the position L!t" of the
front !or granular pile foot" in all experimental runs. The
results are illustrated in Fig. 5, where we display the normal-
ized distance traveled by the pile foot !L−Li" /Li as a func-
tion of the scaled time t /!c for three different values of a.
Interestingly, all runs exhibit the same time evolution regard-
less of the value of a. After a transient acceleration phase
lasting approximately 0.8!c, the foot of the heap moves at a
nearly constant spreading velocity V for about 2!c. Most of
the total distance traveled by the foot of the heap is covered
during this time interval. Finally, the flow front decelerates
and comes to rest in a time on the order of 0.6!c. The total
duration of the flow is therefore of the order of 3!c for all
values of a. The same behavior is observed in the semiaxi-
symmetric setup, which is consistent with the observations of
Lube et al.,9 who reported a total flow duration on the order
of a few multiples of !c for axisymmetric collapses.

B. Deposit morphology

The evolution of the deposit shape with a was quantita-
tively investigated by measuring the scaled deposit height
Hf /Li and the scaled runout length "L /Li= !Lf −Li" /Li,
where Hf and Lf are respectively the deposit height and
length. The results are plotted in Fig. 6. In order to compare
the scaling laws observed in the rectangular channel to these
observed in axisymmetric geometries, we have added the
data set for axisymmetric collapses from Lajeunesse et al.10

In both geometries and despite rather complex flow dynam-
ics, the scaled deposit height and runout collapse on quite
simple power-law curves summarized below:

• In the axisymmetric geometry:

Hf

Li
= # a a # 0.74,

0.74 a $ 0.74,
$

"L

Li
% #a a # 3,

a1/2 a $ 3.
$

• In the rectangular channel:

FIG. 4. Sequence of scaled profiles
h!x , t" /Li of three different granular
heaps of same initial aspect ratio a
=3.2 but obtained with different
masses or bead sizes. !a" t=0, !b" t
=0.5!c, !c" t=!c, !d" t=2!c, !e" t
=3!c, and !f" final deposit. The plain
line profiles correspond to M
=650 g, Li=5.3 cm, and d
=1.15 mm. The plain line with
circles profiles correspond to M
=650 g, Li=5.3 cm, and d=3 mm.
The dotted line profiles correspond
to M =162.5 g, Li=2.6 cm, and d
=1.15 mm. The different curves are
barely distinguishable.
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• good quantitative behaviour!

• test another case?



• A well know experimental result:  
Hagen Beverloo constant discharge law!

• Tool:  
contact dynamics for discrete simulation  
and  continuum «µ(I) rheology»!

• the Hour Glass: discrete versus continuum simulations



catalogue de l’exposition à la Conquête des Mers, Hospice Comtesse Lille 1983

The Hour Glass

XVIII century

watchkeeping



The Hour Glass

Nedderman

2D model computed with DCM !
~ 90x90 grains



Nedderman
u �

�
gD

D



no influence of the hight !
nor the width!
influence of  D, d and  , !
so by dimensional analysis: 

• Hagen 1852 Beverloo 1961 constant discharge law

W = C�
�

g(D � kd)5

C � 0.6 k � 1.5

mass flow rate

�

d

D

W = C�
�

g(D � kd)3 in 2D

in 3D

u �
�

gD

Gotthilf Hagen 1797-1884



• A well know experimental result:  
Hagen Beverloo constant discharge law!

• Tool: contact dynamics for discrete simulation!

• Presentation of continuum «µ(I) rheology»!

• Implementation in a Navier Stokes FV VOF!

• example of simulations DCM versus NS: collapse of columns!

• the Hour Glass: discrete versus continuum simulations

• Problem:  
Simulate the hour glass with discrete and continuum 
theories!

• try to recover the Beverloo 1961 Hagen 1852 law from 
discrete and continuum simulations



• Flow in a Hourglass Discharge from Hoppers

simulation DCM



• Flow in a Hourglass Discharge from Hoppers
simulation Navier Stokes µ(I)



• Flow in a Hourglass Discharge from Hoppers

simulation discrete vs continuum



• comparing Torricelli
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• Flow in a Hourglass Discharge from Hoppers

Width of the aperture

discrete vs continuum (a shift)
Beverloo (1961)!
Hagen (1852)

µ(I) = µ1 +
µ2 � µ1

I0/I + 1
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FIG. 2: a- Volume V̄ of material remaining in the silo as
a function of time for an outlet size L̄ = 0.125 and filling
height H̄ = 0.9 in the case of a plastic flow (µs = 0.32, �µ =
0.28 and I0 = 0.40) and in the case of a Newtonian flow

(� = 0.01⇤g
1
2W

3
2 ); b- Berveloo scaling obtained for L̄ varying

between 0.0625 and 0.28125.

silo in the course of time for the same system. We observe
a linear evolution throughout the discharge for the granu-
lar fluid, revealing a constant flow rate as in real discrete
granular silos. We measure the value of the viscosity
in the vicinity of the outlet and find a roughly constant
value during the discharge equal to �̄ = 0.01 (normalized
by ⇤g

1
2W

3
2 ). Using this value for the viscosity, we sim-

ulate the discharge of a silo filled with Newtonian fluid;
the corresponding volume-vs-time evolution is shown in
Figure 2-a, and is non-linear, suggesting a dependence on
the height of material left in the silo, as in the case of an
hydrostatic pressure field. For comparison, we plot the
solution of the (non-dimensional) Torricelli discharge for
an ideal fluid:

dh̄

dt̄
= �L̄

p
2h̄,

h̄(t̄) =

✓p
H̄ � L̄p

2
t̄

◆2

,

where h̄ is the instantaneous height of material remain-
ing in the silo (normalized by W ) at time t̄ (normalized
by

p
W/g). Torricelli’s discharge matches the onset of

the discharge of the Newtonian fluid provided we chose a
smaller numerical value for L̄ than that of the simulation
(L̄ = 0.0714 instead of 0.125). Comparing the discharge
of the Newtonian fluid and the granular plastic fluid thus
points at the plastic property of the flow as responsible
for the constant nature of the discharge rate in the latter
case.

FIG. 3: Volume V̄ of material remaining in the silo as a func-
tion of time for L̄ = 0.1875 and filling heights H̄ = 1.5,
H̄ = 2.5, H̄ = 3.5 and H̄ = 4.5 for a µ(I) plastic flow
(µs = 0.32, �µ = 0.28 and I0 = 0.40). Inset: Berverloo
scalings corresponding to each case.

We observe that the flow rate remains constant through-
out the discharge of the plastic silo over a large range of
outlet size L̄. Varying L̄ between 0.0625 (ie 16 computa-
tion cells for 258 computations cells in W) and 0.28125 (ie
72 computation cells for 258 computations cells in W),
we measure the flow rate Q̄, and search for a relation
satisfying the shape of the Beverloo scaling:

Q̄ = C
�
L̄� k

� 3
2 (2)

where C and k are constants. For a continuum silo, the
numerical value of k is expected to be zero, in contrast
to granular silos where the grain diameter imposes a vol-
ume of exclusion reducing the e⇥ective size of the outlet.
Imposing k = 0, we recover the Berverloo scaling with
a good accuracy, giving C = 1.4 (see Figure 2-b). Note
however that making no assumption on the fitting pa-
rameters, the best fit gives k = 0.00938 = 0.85d̄, where
d̄ = 1/90 is the grain diameter used in the µ(I)-rheology
normalized by W . Although not completely negligible,
we consider nevertheless that this value is not physically
significant.

IV. INCREASING THE FILLING HEIGHT

To check that the discharge rate remains constant
irrespective of the initial filling height, we perform
additional simulations with H̄ = 1.5, 2.5, 3.5 and 4.5,
with the same rheological parameters as previously
(µs = 0.32, �µ = 0.28 and I0 = 0.40). Figure 3 shows
the volume V̄ left in the silo in the course of time for an
outlet size L̄ = 0.1875 for all four cases. We observe a
linear evolution of very similar slope, suggesting that the
discharge rate is essentially constant and independent
of the filling height. However, closer inspection shows
that the slope varies slightly during the discharge: for
H̄ = 4.5 for instance, the initial flow rate has decreased
of 1.4% halfway through the discharge. Moreover, a

4

FIG. 4: Pressure field in the early stage of the discharge for
two granular plastic silos of initial filling heights H̄ = 1.5
(right) and H̄ = 4.5 (left), outlet L̄ = 0.1875 and friction co-
e⌅cient µs = 0.32 (�µ = 0.28 and I0 = 0.40). The color scale
is identical on both images: the highest bound (red color) is
set to P̄ = 1.3; the pressure jump between two isolines is 0.15.

slight increase of the flow rate is observed for larger
filling height: approximating the discharge by an a⌅ne
function over its full duration, we find a flow rate
increase of 1.8% for H̄ = 2.5 and an increase of 3.9% for
H̄ = 4.5 compared to the case of H̄ = 1.5.
Measuring the flow rate Q̄ in the early stage of the
discharge for the di�erent values of H̄ and di�erent
outlet dimension L̄, we recover the Berveloo scaling (2),
but with coe⌅cients varying slightly with the value of H̄
(Figure 3, inset). This weak influence of the initial filling
height is maximum in the early stage of the discharge,
but vanishes at the end: the curves shown in Figure
3 can be superimposed when shifted towards the final
stage of the discharge.
Altogether, the flow rate during the discharge of con-
tinuum granular material is very weakly a�ected by the
initial filling height H̄. By contrast, the pressure field
strongly changes with the value of H̄, as is visible on
the two snapshots shown in Figure 4 for H̄ = 1.5 and
H̄ = 4.5 in the early stage of the discharge. In both cases
however, we observe a low pressure cavity in the vicinity
of the outlet, suggesting that the discharge is a�ected
by this local pressure condition and insensitive to the
mean pressure in the silo. Comparison with the pressure
field in a Newtonian silo shows that the existence of this
pressure cavity is contingent on the existence of a yield
stress (Figure 6).

FIG. 5: Volume of material V̄ remaining in the silo as a func-
tion of time t̄ for L̄ = 0.1875 and filling height H̄ = 4.5, for
a µ(I) plastic flow with µs = 0.10, µs = 0.20, and µs = 0.32
(�µ = 0.28 and I0 = 0.40). Inset: Flow rate Q̄ as a function
of outlet size L̄ for µs = 0.10 and µs = 0.32.

FIG. 6: Pressure field in the early stage of the discharge for
a granular plastic flow with friction coe⌅cient µs = 0.10
(�µ = 0.28 and I0 = 0.40) (right) and for a Newtonian

flow of viscosity �̄ = 0.01 (normalized by ⇤g
1
2W

2
3 ) (left): in

both cases, no low-pressure cavity can develop. Outlet size
L̄ = 0.1875, filling height H̄ = 1.5. The color scale is identical
on both images and identical to Figure 4: the highest bound
(red color) is set to P̄ = 1.3; the pressure jump between two
isolines is 0.15.

V. INFLUENCE OF THE INTERNAL
FRICTION

We suspect the deviation of the discharge rate from the
hydrostatic case to be the result of the non-newtonian na-
ture of the µ(I)-rheology, and more specifically of the ex-
istence of a yield stress; accordingly, we expect the value
of the coe⌅cient of friction to have important repercus-
sions on the discharge flow. Figure 5 shows the discharge
of a silo with H̄ = 4.5 and outlet L̄ = 0.1875 for di�er-
ent values of the coe⌅cient of static friction µs = 0.10,
µs = 0.20 and µs = 0.32: we observe that a smaller

NO influence of initial filling height
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• µ(I) Rheology for granular flows?!

• granular: ubiquitous!

• Shallow Water: good tool for avalanches (geophysics)!

• good qualitative behaviour (discr. / cont.)!

• Collapse scaling - Beverloo scaling: µ(I) !

• Beverloo at same rate: velocity pressure superposed !

• but: coef. µ(I) depend on the geometry?

Conclusion



•  discrete continus (like air water..)

grains discretes Continus fluid , Navier Stokes

simplified system : Saint Venant

Conclusion

•  lot of applications



• µ(I) ill posed: Barker,  Schaeffer, Bohorquez, Gray…!

• Shallow Water: extra term Edwards, Baker, Gray…!

• Segregation: Gajjar, Gray…

Conclusion

!

• non local effects? Kamrin Boquet!

• instabilities?



Time for questions ?

Thanks for attention


