Advances in boiling simulations using interface tracking methods and microscale modeling

Alexandre Guion

Prof. J. Buongiorno Prof. N. Todreas Prof. E. Baglietto Prof. S. Zaleski

Massachusetts Institute of Technology

November 10, 2014

THE NEED FOR PREDICTIVE SIMULATIONS

THE NEED FOR PREDICTIVE SIMULATIONS

Bubble radius reaches mm within ms

 $^{^\}dagger S.$ Jung, H. Kim, Simultaneous measurements of liquid-vapour phase and temperature distributions on boiling surface with synchronized infrared thermometry and total internal reflection techniques, NURETH-15 Italy, May 12-17, 2013

 $^{^{\}dagger}$ S. Jung, H. Kim, Simultaneous measurements of liquid-vapour phase and temperature distributions on boiling surface with synchronized infrared thermometry and total internal reflection techniques, NURETH-15 Italy, May 12-17, 2013

[†]S. Jung, H. Kim, Simultaneous measurements of liquid-vapour phase and temperature distributions on boiling surface with synchronized infrared thermometry and total internal reflection techniques, NURETH-15 Italy, May 12-17, 2013

 $^{^\}dagger S.$ Jung, H. Kim, Simultaneous measurements of liquid-vapour phase and temperature distributions on boiling surface with synchronized infrared thermometry and total internal reflection techniques, NURETH-15 Italy, May 12-17, 2013

 $^{^\}dagger S.$ Jung, H. Kim, Simultaneous measurements of liquid-vapour phase and temperature distributions on boiling surface with synchronized infrared thermometry and total internal reflection techniques, NURETH-15 Italy, May 12-17, 2013

[†]S. Jung, H. Kim, Simultaneous measurements of liquid-vapour phase and temperature distributions on boiling surface with synchronized infrared thermometry and total internal reflection techniques, NURETH-15 Italy, May 12-17, 2013

[†]S. Jung, H. Kim, Simultaneous measurements of liquid-vapour phase and temperature distributions on boiling surface with synchronized infrared thermometry and total internal reflection techniques, NURETH-15 Italy, May 12-17, 2013

[†]S. Jung, H. Kim, Simultaneous measurements of liquid-vapour phase and temperature distributions on boiling surface with synchronized infrared thermometry and total internal reflection techniques, NURETH-15 Italy, May 12-17, 2013

MICROLAYER FORMS, THEN EVAPORATES

H. Kim, J. Buongiorno, Detection of Liquid-Vapor- Solid Triple Contact Line in Two-Phase Heat Transfer Phenomena Using High-Speed Infra-Red Thermometry, Int. J. Multiphase Flow, 37, 166-172 (2011)

Advances in Boiling Simulations

MICROLAYER FORMS, THEN EVAPORATES

H. Kim, J. Buongiorno, Detection of Liquid-Vapor- Solid Triple Contact Line in Two-Phase Heat Transfer Phenomena Using High-Speed Infra-Red Thermometry, Int. J. Multiphase Flow, 37, 166-172 (2011)

Advances in Boiling Simulations

MICROLAYER FORMS, THEN EVAPORATES

H. Kim, J. Buongiorno, Detection of Liquid-Vapor- Solid Triple Contact Line in Two-Phase Heat Transfer Phenomena Using High-Speed Infra-Red Thermometry, Int. J. Multiphase Flow, 37, 166-172 (2011)

Advances in Boiling Simulations

^{*}C. Kunkelmann and P. Stephan, Numerical simulation of the transient heat transfer during nucleate boiling of refrigerant HFE-7100, Int. J. Refrigeration, 33(7), 1221-1228 (2010).

[†]G. Tryggvason, S. Thomas, and J. Lu, Direct Numerical Simulations of Nucleate Boiling, IMECE2008-67444, Proceedings of IMECE-2008, 2008 ASME International Mechanical Engineering Congress and Exposition Boston, Massachusetts, USA, October 31-November 6, 2008

⁺V. K. Dhir, Simulation of boiling how far we have come!, ECI International Conference on Boiling Heat Transfer, Florianopolis-SC-Brazil, 3-7 May 2009.

⁸P. Delgoshaei, Microscale heat transfer measurements during subcooled pool boiling of pentane: effect of fluid properties and bubble dynamics, Ph.D Thesis, 2009

[¶]A. Guion, D. Langewisch, J. Buongiorno, Dynamics of the liquid microlayer underneath a vapor bubble growing at a heated wall, Proceedings of the ASME Summer Heat Transfer Conference HT2013 July 14-19, 2013, Minneapolis, MN, USA.

$$\frac{\partial_t \delta}{\partial_t \delta} = -\frac{k_l}{\rho_f h_{fg}} \frac{T_w - T_{sat}}{\delta}$$

(1)

^{*}C. Kunkelmann and P. Stephan, Numerical simulation of the transient heat transfer during nucleate boiling of refrigerant HFE-7100, Int. J. Refrigeration, 33(7), 1221-1228 (2010).

[†]G. Tryggvason, S. Thomas, and J. Lu, Direct Numerical Simulations of Nucleate Boiling, IMECE2008-67444, Proceedings of IMECE-2008, 2008 ASME International Mechanical Engineering Congress and Exposition Boston, Massachusetts, USA, October 31-November 6, 2008

^IV. K. Dhir, Simulation of boiling how far we have come!, ECI International Conference on Boiling Heat Transfer, Florianopolis-SC-Brazil, 3-7 May 2009.

⁸P. Delgoshaei, Microscale heat transfer measurements during subcooled pool boiling of pentane: effect of fluid properties and bubble dynamics, Ph.D Thesis, 2009

[¶]A. Guion, D. Langewisch, J. Buongiorno, Dynamics of the liquid microlayer underneath a vapor bubble growing at a heated wall, Proceedings of the ASME Summer Heat Transfer Conference HT2013 July 14-19, 2013, Minneapolis, MN, USA.

$$\partial_t \delta = -\frac{k_l}{\rho_f h_{fg}} \frac{T_w - T_{sat}}{\delta}$$

► Complements existing literature

- 1. static models^{*†‡}
- 2. evaporation models[§]

(1)

^{*}C. Kunkelmann and P. Stephan, Numerical simulation of the transient heat transfer during nucleate boiling of refrigerant HFE-7100, Int. J. Refrigeration, 33(7), 1221-1228 (2010).

[†]G. Tryggvason, S. Thomas, and J. Lu, Direct Numerical Simulations of Nucleate Boiling, IMECE2008-67444, Proceedings of IMECE-2008, 2008 ASME International Mechanical Engineering Congress and Exposition Boston, Massachusetts, USA, October 31-November 6, 2008

^IV. K. Dhir, Simulation of boiling how far we have come!, ECI International Conference on Boiling Heat Transfer, Florianopolis-SC-Brazil, 3-7 May 2009.

 $^{{}^{\}S}$ P. Delgoshaei, Microscale heat transfer measurements during subcooled pool boiling of pentane: effect of fluid properties and bubble dynamics, Ph.D Thesis, 2009

[¶]A. Guion, D. Langewisch, J. Buongiorno, Dynamics of the liquid microlayer underneath a vapor bubble growing at a heated wall, Proceedings of the ASME Summer Heat Transfer Conference HT2013 July 14-19, 2013, Minneapolis, MN, USA.

$$\partial_t \delta = -\frac{k_l}{\rho_f h_{fg}} \frac{T_w - T_{sat}}{\delta}$$

(1)

► Complements existing literature

- 1. static models^{*†‡}
- 2. evaporation models[§]
- ▶ Derived from first principles ¶

^{*}C. Kunkelmann and P. Stephan, Numerical simulation of the transient heat transfer during nucleate boiling of refrigerant HFE-7100, Int. J. Refrigeration, 33(7), 1221-1228 (2010).

[†]G. Tryggvason, S. Thomas, and J. Lu, Direct Numerical Simulations of Nucleate Boiling, IMECE2008-67444, Proceedings of IMECE-2008, 2008 ASME International Mechanical Engineering Congress and Exposition Boston, Massachusetts, USA, October 31-November 6, 2008

^IV. K. Dhir, Simulation of boiling how far we have come!, ECI International Conference on Boiling Heat Transfer, Florianopolis-SC-Brazil, 3-7 May 2009.

 $^{{}^{\}S}$ P. Delgoshaei, Microscale heat transfer measurements during subcooled pool boiling of pentane: effect of fluid properties and bubble dynamics, Ph.D Thesis, 2009

[¶]A. Guion, D. Langewisch, J. Buongiorno, Dynamics of the liquid microlayer underneath a vapor bubble growing at a heated wall, Proceedings of the ASME Summer Heat Transfer Conference HT2013 July 14-19, 2013, Minneapolis, MN, USA.

MODEL CAPTURES CONSISTENT DYNAMICS

^{*}V.P.Carey.Liquid vapor phase change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. Taylor and Francis, New York, 2 edition, 2008

 $^{^\}dagger \rm Scriven$ L.E., On the Dynamics of Phase Growth, Chemical Engineering Science, Vol 10, 1959

▶ Gap in literature

- 1. limited experimental data (see length and time scales)
- 2. limited models (overpredict initial thickness*)

^{*}V.P.Carey.Liquid vapor phase change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. Taylor and Francis, New York, 2 edition, 2008

[†]Scriven L.E., On the Dynamics of Phase Growth, Chemical Engineering Science, Vol 10, 1959

▶ Gap in literature

- 1. limited experimental data (see length and time scales)
- 2. limited models (overpredict initial thickness*)

▶ Need for simulations of inertial bubble growth

- 1. model mass transfer with an overpressure at interface
- 2. compare simulation with reference growth[†]
- 3. inform dynamics of microlayer formation

^{*}V.P.Carey.Liquid vapor phase change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. Taylor and Francis, New York, 2 edition, 2008

[†]Scriven L.E., On the Dynamics of Phase Growth, Chemical Engineering Science, Vol 10, 1959

▶ Gap in literature

- 1. limited experimental data (see length and time scales)
- 2. limited models (overpredict initial thickness*)

▶ Need for simulations of inertial bubble growth

- 1. model mass transfer with an overpressure at interface
- 2. compare simulation with reference growth[†]
- 3. inform dynamics of microlayer formation

DETERMINE INITIAL SHAPE, USING GERRIS

^{*}V.P.Carey.Liquid vapor phase change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. Taylor and Francis, New York, 2 edition, 2008

[†]Scriven L.E., On the Dynamics of Phase Growth, Chemical Engineering Science, Vol 10, 1959

REFERENCE GROWTH RATE: NO WALL (∞ LIQUID)

Rayleigh solution:

 $^{{}^{*}}$ The equivalent radius can be found by matching the simulated bubble volume with a perfect hemisphere (half a sphere)

 $\delta = \mathbf{f} (\mu_v, \mu_l, \rho_v, \rho_l, \Delta P, \sigma, \theta, R_b, r)$

$$\delta = \mathbf{f} \left(\begin{array}{c} \mu_{v}, \mu_{l}, \rho_{v}, \rho_{l}, \Delta P, \sigma, \theta, R_{b}, r \end{array} \right)$$
$$U_{b} = \sqrt{\frac{2\Delta P}{3\rho_{l}}} \quad Re = \frac{\rho_{l}U_{b}R_{b}}{\mu_{l}} \quad Ca = \frac{\mu_{l}U_{b}}{\sigma}$$

Alexandre Guion

Advances in Boiling Simulations 16 / 21

$$\delta = f \left(\begin{array}{l} \mu_{v}, \mu_{l}, \rho_{v}, \rho_{l}, \Delta P, \sigma, \theta, R_{b}, r \end{array} \right)$$
$$U_{b} = \sqrt{\frac{2\Delta P}{3\rho_{l}}} \quad Re = \frac{\rho_{l}U_{b}R_{b}}{\mu_{l}} \quad Ca = \frac{\mu_{l}U_{b}}{\sigma}$$
$$\boxed{\frac{\delta}{R_{b}} = f \left(\frac{\mu_{v}}{\mu_{l}}, \frac{\rho_{v}}{\rho_{l}}, \frac{r}{R_{b}}, Re, Ca, \theta \right)}$$

Alexandre Guion Advances in Boiling Simulations

Ϊ

16/21

SIMULATION OF INERTIAL BUBBLE GROWTH (r,z) domain: $120\mu m \times 120\mu m$, cavity size $r_c = 10\mu m$

SIMULATION OF INERTIAL BUBBLE GROWTH (r,z) domain: $120\mu m \times 120\mu m$, cavity size $r_c = 10\mu m$ $P_{root} = 50$ kPa, Re ~ 200, Ca = 0.03, $\theta = 10^{\circ}$

SIMULATION OF INERTIAL BUBBLE GROWTH (r,z) domain: $120\mu m \times 120\mu m$, cavity size $r_c = 10\mu m$ $P_{root} = 50$ kPa, Re ~ 200, Ca = 0.03, $\theta = 10^{\circ}$

Alexandre Guion

Advances in Boiling Simulations

SIMULATED BUBBLE BECOMES HEMISPHERICAL $P_{root} = 50$ kPa, Re ~ 200, Ca = 0.03, $\theta = 10^{\circ}$

Alexandre Guion

Advances in Boiling Simulations

SIMULATED GROWTH MATCHES REFERENCE $P_{root} = 50 \text{ kPa}, \text{ Re} \sim 200, \text{ Ca} = 0.03, \theta = 10^{\circ}$

SIMULATED MICROLAYER PROFILES

 $P_{root} = 50$ kPa, Re ~ 200, Ca = 0.03, $\theta = 10^{\circ}$

[†]Scriven L.E., On the Dynamics of Phase Growth, Chemical Eng. Science, Vol 10, 1959

^{*}V.P.Carey.Liquid vapor phase change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. Taylor and Francis, New York, 2 edition, 2008

Advances in Boiling Simulations

► Gap in literature

- 1. limited experimental data (see length and time scales)
- 2. limited models (overpredict initial thickness*)

[†]Scriven L.E., On the Dynamics of Phase Growth, Chemical Eng. Science, Vol 10, 1959

^{*}V.P.Carey.Liquid vapor phase change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. Taylor and Francis, New York, 2 edition, 2008

Advances in Boiling Simulations

► Gap in literature

- 1. limited experimental data (see length and time scales)
- 2. limited models (overpredict initial thickness*)

▶ Simulations of inertial bubble growth

- 1. model mass transfer with an overpressure at interface
- 2. compare simulation with reference growth[†]

[†]Scriven L.E., On the Dynamics of Phase Growth, Chemical Eng. Science, Vol 10, 1959

^{*}V.P.Carey.Liquid vapor phase change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. Taylor and Francis, New York, 2 edition, 2008

Advances in Boiling Simulations

▶ Gap in literature

- 1. limited experimental data (see length and time scales)
- 2. limited models (overpredict initial thickness*)
- ▶ Simulations of inertial bubble growth
 - 1. model mass transfer with an overpressure at interface
 - 2. compare simulation with reference growth^{\dagger}

▶ Inform formation dynamics and initial shape

$$\frac{\delta}{R_b} = f\left(\frac{\mu_v}{\mu_l}, \frac{\rho_v}{\rho_l}, \frac{r}{R_b}, \frac{Re}{Re}, Ca, \theta\right)$$

[†]Scriven L.E., On the Dynamics of Phase Growth, Chemical Eng. Science, Vol 10, 1959

^{*}V.P.Carey.Liquid vapor phase change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. Taylor and Francis, New York, 2 edition, 2008

Advances in Boiling Simulations