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BOILING IS COMPLICATED BY THE MICROLAYER

†
S. Jung, H. Kim, Simultaneous measurements of liquid-vapour phase and temperature

distributions on boiling surface with synchronized infrared thermometry and total internal
reflection techniques, NURETH-15 Italy, May 12-17, 2013
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MICROLAYER FORMS, THEN EVAPORATES

H. Kim, J. Buongiorno, Detection of Liquid-Vapor- Solid Triple Contact Line in
Two-Phase Heat Transfer Phenomena Using High-Speed Infra-Red Thermometry, Int. J.
Multiphase Flow, 37, 166-172 (2011)
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MICROLAYER EVAPORATION MODEL

∂tδ = − kl
ρfhfg

Tw − Tsat
δ

(1)

I Complements existing literature
1. static models∗†‡

2. evaporation models§

I Derived from first principles ¶

∗
C. Kunkelmann and P. Stephan, Numerical simulation of the transient heat transfer

during nucleate boiling of refrigerant HFE-7100, Int. J. Refrigeration, 33(7), 1221-1228 (2010).
†
G. Tryggvason, S. Thomas, and J. Lu, Direct Numerical Simulations of Nucleate Boiling,

IMECE2008-67444, Proceedings of IMECE-2008, 2008 ASME International Mechanical
Engineering Congress and Exposition Boston, Massachusetts, USA, October 31-November 6,
2008
‡
V. K. Dhir, Simulation of boiling how far we have come!, ECI International Conference

on Boiling Heat Transfer, Florianopolis-SC-Brazil, 3-7 May 2009.
§
P. Delgoshaei, Microscale heat transfer measurements during subcooled pool boiling of

pentane: effect of fluid properties and bubble dynamics, Ph.D Thesis, 2009
¶

A. Guion, D. Langewisch, J. Buongiorno, Dynamics of the liquid microlayer underneath a
vapor bubble growing at a heated wall, Proceedings of the ASME Summer Heat Transfer
Conference HT2013 July 14-19, 2013, Minneapolis, MN, USA.
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MODEL CAPTURES CONSISTENT DYNAMICS
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GROWTH RATE DEPENDS ON INITIAL CONDITION
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THE INITIAL SHAPE IS NOT KNOWN

I Gap in literature
1. limited experimental data (see length and time scales)
2. limited models (overpredict initial thickness∗)

I Need for simulations of inertial bubble growth
1. model mass transfer with an overpressure at interface
2. compare simulation with reference growth†

3. inform dynamics of microlayer formation

DETERMINE INITIAL SHAPE, USING GERRIS

∗
V.P.Carey.Liquid vapor phase change phenomena: an introduction to the thermophysics

of vaporization and condensation processes in heat transfer equipment. Taylor and Francis,
New York, 2 edition, 2008
†
Scriven L.E., On the Dynamics of Phase Growth, Chemical Engineering Science, Vol 10,

1959
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REFERENCE GROWTH RATE: NO WALL (∞ LIQUID)

Rayleigh solution:

Ra(t) =

√
2∆P

3ρL
× t (2)

Ra
∆PρL

∗
The equivalent radius can be found by matching the simulated bubble volume with a

perfect hemisphere (half a sphere)
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RESEARCH OBJECTIVE:
INITIAL MICROLAYER SHAPE, USING GERRIS

vapor
µv, ρv

solid (θ)
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liquid
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liquid
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SIMULATION OF INERTIAL BUBBLE GROWTH
(r,z) domain: 120µm× 120µm, cavity size rc = 10µm

Proot = 50 kPa, Re ∼ 200, Ca = 0.03, θ = 10◦
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SIMULATED BUBBLE BECOMES HEMISPHERICAL

Proot = 50 kPa, Re ∼ 200, Ca = 0.03, θ = 10◦
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SIMULATED GROWTH MATCHES REFERENCE

Proot = 50 kPa, Re ∼ 200, Ca = 0.03, θ = 10◦
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SIMULATED MICROLAYER PROFILES

Proot = 50 kPa, Re ∼ 200, Ca = 0.03, θ = 10◦
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CONCLUSION: INITIAL MICROLAYER FORMATION

I Gap in literature
1. limited experimental data (see length and time scales)
2. limited models (overpredict initial thickness∗)

I Simulations of inertial bubble growth
1. model mass transfer with an overpressure at interface
2. compare simulation with reference growth†

I Inform formation dynamics and initial shape

δ

Rb

= f

(
µv

µl

,
ρv
ρl
,
r

Rb

, Re, Ca, θ

)

∗
V.P.Carey.Liquid vapor phase change phenomena: an introduction to the thermophysics

of vaporization and condensation processes in heat transfer equipment. Taylor and Francis,
New York, 2 edition, 2008
†
Scriven L.E., On the Dynamics of Phase Growth, Chemical Eng. Science, Vol 10, 1959
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