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Overview

Numerical development
@ Gerris . In particular | develop a new branch of it and Paris Simulator

@ Tools for turbulence simulations
@ Turbulence models (LES).
@ Special numerical schemes (skew-symmetric formulation)
@ Numerical tools for the analysis of turbulent structures (FFTW for flow field
variables and interfaces)
@ Special Adaptive Mesh Refinement features.
@ Subgrid models (particle models)
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Applications
@ Investigation of atomization processes: Fuster et al (JFM, 2013)
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Applications
@ Investigation of atomization processes: Fuster et al (JFM, 2013)

& Argon Laser 3W [} > ‘e

i ] | =
@ Wave turbulence: Deike et al (PRL, 2014)

@ Turbulent and reactive flows in catalytic converters
Ozhan et al (CES, 2014)

C. Ozhanetal () Efficient AMR criteria for vortical structures October 26, 2014 3/44



]
Overview

Numerical development

@ Gerris (in particular | develop a new branch of it) and Paris Simulator
@ Tools for turbulence simulations

@ Turbulence models (LES).

@ Special numerical schemes (skew-symmetric formulation)

@ Numerical tools for the analysis of turbulent structures (FFTW for flow field
variables and interfaces)

@ Special Adaptive Mesh Refinement features and subgrid models.

C. Ozhanetal () Efficient AMR criteria for vortical structures October 26, 2014 444



]
Overview

Numerical development

@ Gerris . In particular | develop a new branch of it and Paris Simulator

@ Tools for turbulence simulations

@ Turbulence models (LES).

@ Special numerical schemes (skew-symmetric formulation)

@ Numerical tools for the analysis of turbulent structures (FFTW for flow field
variables and interfaces)

@ Special Adaptive Mesh Refinement features and subgrid models.

C. Ozhanetal () Efficient AMR criteria for vortical structures October 26, 2014 5/44



]
Numerical schemes for turbulent flow simulations

How to handle multiphase flows and turbulence in Gerris?

DB: file-0-0.10.vtk
Cycle: 10

user: fuster
Tue Jul 24 10:05:55 2012
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@ Gerris allows for the DNS of multiphase flows
@ Proper numerical schemes?
@ DNS are expensive, how to reduce the computational effort?
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I
Skew-symmetric formulation [J. Comp. Phys, 2013]

Isotropic turbulence
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Skew-symmetric formulation [J. Comp. Phys, 2013]
Isotropic turbulence
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I
Skew-symmetric formulation [J. Comp. Phys, 2013]

Isotropic turbulence

E(K) = ae/3k=> 1 (kLine) fu (kLin R %)
Lint = O-5Lbox
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Effect of multiple phases (same Reynolds in both phases)
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Can other numerical schemes came to rescue?

@ We are currently working with S. Zaleski on the implentation of a
momentum conservative scheme (Paris Simulator)
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Can other numerical schemes came to rescue?

@ We are currently working with S. Zaleski on the implentation of a
momentum conservative scheme (Paris Simulator)

@ The idea is to advect momentum "geometrically” (as in VOF): Rudman'’s
method (IINMF, 1998) but without the need of working with a subgrid.

@ It avoids instabilities at large momentum ratios

@ but does it also improve the quality of the solution in turbulent
simulations?
Work in progress
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@ Gerris allows for the DNS of multiphase flows
@ Proper numerical schemes?
@ DNS are expensive, how to reduce the computational effort?

o Adaptive Mesh Refinement (AMR)
@ Subgrid models (Particle module)
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|
Motivation

We are interested in developing numerical tools for the simulation of turbulent
flows.

In particular this work is motivated by the flow simulation inside a catalytic
converter system:

Recirculation region
Shear layer
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Motivation

We are interested in developing numerical tools for the simulation of turbulent
flows.

In particular this work is motivated by the flow simulation inside a catalytic
converter system:

Recirculation region
Shear layer

Adaptive Mesh Refinement (AMR) help us to save a significant amount of
computational time!
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Problematic:

@ DNS is not always possible because the smallest scale on the problem
can be really small
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Problematic:
@ DNS is not always possible because the smallest scale on the problem
can be really small
@ What we want is to get as close as possible to the real solution trying to
optimize the grid distribution
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Optimizing the grid distribution
In order to dynamically adapt the grid one needs to adapt the grid
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Optimizing the grid distribution

In order to dynamically adapt the grid one needs to adapt the grid
@ How to estimate the error?
@ and maybe more important... to estimate the error of what?

Test cases
In order to measure the efficiency of AMR techniques we need:
@ Simplified test cases with analytical solution
@ We want to measure the global and local efficiency of the method

C. Ozhanetal () Efficient AMR criteria for vortical structures October 26, 2014 17/ 44



We need to chose:

@ A method to estimate the error
@ A norm to adapt the grid:

AMR criteria — Errorx Az"
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Because of their efficiency, we compare different a-posteriori error estimation
methods:
@ Error indicators

We trust in our intuition to define variables that we expect to be
proportional to the error
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Because of their efficiency, we compare different a-posteriori error estimation
methods:

@ Error indicators
We trust in our intuition to define variables that we expect to be
proportional to the error
@ Gradient (velocity, tracer)
@ Vorticity norm
@ Helicity norm (3D)
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Because of their efficiency, we compare different a-posteriori error estimation
methods:

@ A Hessian based h-refinement algorithm
We measure the error of a given quantity based on the difference
between two consecutive levels
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Because of their efficiency, we compare different a-posteriori error estimation
methods:

@ A Hessian based h-refinement algorithm
We measure the error of a given quantity based on the difference
between two consecutive levels
It is an estimation of the discretization error on a given variable
@ Conservative variables (momentum, energy...)
o Primitive variables (velocity, pressure...)
@ Variables related to turbulent flows (vorticity, helicity...)
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Because of their efficiency, we compare different a-posteriori error estimation
methods:

@ A residual based method
We try to obtain a measure of the discretization error when solving a
given equation

Yn+1 —-Y"
M -~—

At = Fcom)(YnJrl/Q) + Fdiff(Yn+1/2) +S (1)
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We try to obtain a measure of the discretization error when solving a
given equation

Yn+1 —_Y"
M ~—
At
For each cell, we identify the regime to estimate the error:
@ In advection dominated flows (steady-state)

= Fcom)(YnJrl/Q) + Fdiff(YnJrl/z) +S (1)

Feono(Y) =S8 2)

We can solve for the exact problem in 1D and therefore to obtain an
estimation of the discretization error
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Because of their efficiency, we compare different a-posteriori error estimation
methods:

@ A residual based method
We try to obtain a measure of the discretization error when solving a
given equation

Yn+1 —_Y"
M ~—
At

For each cell, we identify the regime to estimate the error:
@ In advection dominated flows (steady-state)

= Fcom)(YnJrl/Q) + Fdiff(YnJrl/z) +S (1)

Feono(Y) =S8 2)

We can solve for the exact problem in 1D and therefore to obtain an
estimation of the discretization error

@ Same applies for the diffusion limit

@ and reaction limit
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@ A residual based method

Yn+1 _ Yn
M -~—

At - Fconv(Yn+l/2) + Fdiff(Yn+l/2) + S (3)
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We can show that a measure of the discretization error introduced in
each term by difference between two consecutive levels.
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At - FconU(Yn+l/2) + Fdiff(Yn+1/2) + S (3)
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each term by difference between two consecutive levels.

Error, = Ceono||FL,,, — FE 1 L, (4)

conv conv

C. Ozhanetal () Efficient AMR criteria for vortical structures October 26, 2014 2244



]
@ A residual based method

Yn+1 _ Yn
M -~—

At - FconU(Yn+1/2) + Fdiff(Yn+1/2) + S (3)

We can show that a measure of the discretization error introduced in
each term by difference between two consecutive levels.
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For diffusion dominated flows

Errorg = Caifs||Fliss — Fiipglle, 5)
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@ A residual based method

Yn+1 _ Yn
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At - FconU(Yn+1/2) + Fdiff(Yn+1/2) + S (3)

We can show that a measure of the discretization error introduced in
each term by difference between two consecutive levels.
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For diffusion dominated flows
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]
@ A residual based method

Yn+1 _ Yn
M -~—

At - FconU(Yn+1/2) + Fdiff(Yn+1/2) + S (3)

We can show that a measure of the discretization error introduced in
each term by difference between two consecutive levels.

ETTOTC = COTLUHFcLonv - Fgo?i)”l/p (4)

For diffusion dominated flows
Errorg = Caifs||Fliss — Fiipglle, 5)

For reaction dominated flows
Errory = CdiffHSL - SL_IHLP (6)

For each cell the mechanism controlling the error can be different
depending on the local Reynolds number, etc....

This criteria also reduces the error propagation (we reduce the error of
the RHS of the equation)
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Because of their efficiency, we compare different a-posteriori error estimation
methods:

@ A residual based method
We try to obtain a measure of the discretization error when solving a
given equation

Yn+l YY"
M —

At = Fconv(Yn+1/2) + Fdiff(Yn+1/2) + S (7)

o Navier-Stokes (with velocity as primitive variable)

C. Ozhanetal () Efficient AMR criteria for vortical structures October 26, 2014 23/44



Because of their efficiency, we compare different a-posteriori error estimation
methods:

@ A residual based method
We try to obtain a measure of the discretization error when solving a
given equation

Yn+l YY"
J Y/ P —

At = Fconv(Yn+1/2) + Fdiff(Yn+1/2) + S (7)

o Navier-Stokes (with velocity as primitive variable)
@ Vorticity equation

C. Ozhanetal () Efficient AMR criteria for vortical structures October 26, 2014 23/44



Because of their efficiency, we compare different a-posteriori error estimation
methods:
@ A residual based method
We try to obtain a measure of the discretization error when solving a
given equation

Yn+l YY"
J Y/ P —

At = Fconv(Yn+1/2) + Fdiff(Yn+1/2) + S (7)

o Navier-Stokes (with velocity as primitive variable)
@ Vorticity equation
@ Helicity equations
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Because of their efficiency, we compare different a-posteriori error estimation
methods:

@ A residual based method

We try to obtain a measure of the discretization error when solving a
given equation

yrtt—yn +1/2 +1/2
MTZFCOWJ(YTL )+Fdiff(Yn )+ S 7
o Navier-Stokes (with velocity as primitive variable)
@ Vorticity equation
@ Helicity equations
@ Kinetic energy equation
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Because of their efficiency, we compare different a-posteriori error estimation
methods:

@ A residual based method
We try to obtain a measure of the discretization error when solving a
given equation

yrtt—yn +1/2 +1/2
MTZFCOWJ(YTL )+Fdiff(Yn )+ S 7
o Navier-Stokes (with velocity as primitive variable)
@ Vorticity equation
@ Helicity equations
@ Kinetic energy equation
o ...
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Because of their efficiency, we compare different a-posteriori error estimation
methods:

@ Error indicator
Which quantity?
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Because of their efficiency, we compare different a-posteriori error estimation
methods:
@ Error indicator
Which quantity?

@ A Hessian based h-refinement algorithm
Which gquantity?

@ A residual based method
Which equation?

The optimal choice is problem dependent
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I ——
Error estimation for the transport equation: Propagation error only controls in
regions where the error is small
Steady problem

.
5
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Error estimation for the transport equation: Propagation error only controls in
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Three test cases related to our problem of interest:

Recirculation region
Shear layer

a8
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Three test cases related to our problem of interest:

Recirculation region
Shear layer

a8

Test cases
@ Dissipation of the Lamb-Oseen vortex
@ Linear growth of random noise in a shear layer
@ Isotropic turbulence test case
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Lamb-Oseen vortex
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Lamb-Oseen vortex
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Lamb-Oseen vortex
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Noise growth in a shear layer

U = AUerf (y/5.)
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Noise growth in a shear layer

U = AUerf (y/5.)
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I
Isotropic turbulence
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Isotropilc turbulence : L; norm, Hessian based error estimator
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]
based error estimator

Isotropilc turbulence : L, norm, He?osjan
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based error estimator

Isotropilc turbulence : L, norm, He?osjan
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Isotropilc turbulence
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Isotropilc turbulence : Residual basl%g 