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Introduction
Motivation

Numerous microfluidic applications require the efficient mixing of
fluids, however complications arise in low Reynolds number flows,
especially in small scale devices which are difficult to manipulate.

An interesting maze-like configuration has been presented at the 2014
Micro and Nano Flows (MNF) conference by Kefala et al.
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Introduction
Motivation

Active mixers are the alternative to complex geometrical structures
which are often difficult to manufacture and maintain. They employ
external forcing (wide varieties thereof exist) in order to encourage
mixing, typically in channels.

The T-mixer (left, [1]) is one of the most popular experimental devices
used, in various geometrical settings and with added effects such as
time pulsing (right, [2]).

In the present work we aim to model efficient electrohydrodynamic
control procedures in confined geometries that induce time dependent
flows without introducing an imposed velocity field or moving parts.
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Mathematical Model

Electric fields have been considered in previous studies [3,4] as an
efficient means of controlling instabilities arising in some classical
flows.

I The study of interfaces between fluids has received much
attention throughout the last decades;

I High range of applications in classical fluid mechanics, chemical
and biological sciences;

I One of the traditional examples in this field is the Rayleigh-Taylor
instability;

I Imposing a voltage potential difference in a suitable geometrical
setting introduces rich dynamics at the microscale, with
consequences in many applications.
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Mathematical Model - Excursion
Horizontal Electric Fields - RC, DTP and PG Petropoulos, Phys. Fluids, 2014

I Horizontal electric fields (parallel to the fluid-fluid interface) have
a stabilising effect on unstably stratified flows.

I The maximum growth rate decreases and the instability shifts to
longer and longer wavelengths and can eventually be fully
suppressed given a specific wavenumber and tuning the electric
field strength.

I Sustained interfacial oscillations?

Growth rate extraction. Validation.
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Mathematical Model
Geometry

Aim: generate efficient mixing of the passive tracer T within the
dynamic geometry confined by y = S(x , t) and y = L/2 using
interfacial dynamics produced by the imposed electric field.
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Mathematical Model
Governing equations

The equations for the flow field are the Navier-Stokes equations and
the continuity equation for each fluid. In dimensional form the
equations are

ρ1(u1t + (u1 · ∇)u1) = −∇p1 + µ1∆u1 − ρ1gj, (1)

ρ2(u2t + (u2 · ∇)u2) = −∇p2 + µ2∆u2 − ρ2gj, (2)

∇ · u1,2 = 0. (3)

The electric field equations are given by the Laplace equation for each
of the two voltage potentials, one in each fluid

∆V1,2 = 0, (4)

with ∆ ≡ ∂2/∂x2 + ∂2/∂y2 as the Laplacian operator. The voltage
potentials are introduced such that the electric field can then be
described by E1,2 = −∇V1,2.
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Mathematical Model
Nondimensionalization

For convenience in notation we introduce the parameters:

r =
ρ1

ρ2
, m =

µ2

µ1
, ε =

ε1

ε2
, (5)

Assume L to be the width of the channel and U to define the reference
velocity. Using p1 ∼ ρ1U2 and rescaling by U2/L, the following
dimensionless parameters arise:

g̃ =
gL
U2 , µ̃ =

µ1

ρ1UL
, We =

σ

ρ1gL2 , Eb =
V 2ε1

ρ1gL3 = 1. (6)

The absence of a typical velocity in the system encourages the
reformulation of the Reynolds number as an inverse Ohnesorge
number, such that

Re =
1

Oh
=

√
Lρ1σ

µ1
. (7)
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Mathematical Model
Nondimensionalization

With these simplifications, the two Navier-Stokes equations for each
of the two fluids now read:

ũ1t + (ũ1 · ∇)ũ1 = −∇p̃1 + µ̃∆ũ1 − g̃j, (8)

ũ2t + (ũ2 · ∇)ũ2 = −r∇p̃2 + mµ̃r∆ũ2 − g̃j. (9)

Here j denotes the unit vector in vertical direction and (̃·) is used
throughout the presentation to refer to dimensionless quantities.
These equations are naturally complemented by the continuity
equation in each fluid:

∇ · ũ1,2 = 0. (10)

The electric field equations remain unchanged.
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Mathematical Model
Interfacial and boundary conditions

We consider the conditions required at the free surface y = S(x , t)

ṽ1 = St + ũ1Sx , ṽ2 = St + ũ2Sx , (11)

[n · T · n]1
2 = σ̃∇ · n, [t · T · n]1

2 = 0, [ũ]1
2 = 0, (12)

From the electrodynamic perspective we only require continuity of
voltages across the interface and continuity of the normal component
of the displacement field:

[V ]1
2 = 0,

[
ε̃Ẽ · n

]1

2
= 0, (13)

where [·]1
2 represents the jump in the quantity as the interface is

crossed from the lower fluid to the upper fluid. The presence of the
walls dictates the necessity of no-slip and impermeability boundary
conditions on the velocities, as well as Dirichlet boundary conditions
on the electrodes such that

ũ1 = 0 and V1 = 0 at y = −L/2, (14)

ũ2 = 0 and V2 = V̄ at y = +L/2. (15)
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Stability
Approach

Linearization about the base state solutions is performed via

Ṽ1 =
V̄

ε+ 1
(2y + 1) + δV̂1, Ṽ2 =

V̄
ε+ 1

(2εy + 1) + δV̂2, (16)

p̃1 = −g̃y + δp̂1, p̃2 = −g̃y/r +
2V̄ 2

(ε+ 1)2 (ε1 − ε2ε
2) + δp̂2 (17)

ũ1,2 = δû1,2, S = δŜ, (18)

with δ considered to be sufficiently small. We assume normal mode
solutions

V̂1,2(x , y , t) = V̆1,2(y)eikx+ωt , (19)

p̂1,2(x , y , t) = p̆1,2(y)eikx+ωt , (20)

û1,2(x , y , t) = ŭ1,2(y)eikx+ωt , (21)

Ŝ(x , t) = S̆eikx+ωt . (22)

We then substitute the formulas into our entire system of equations
and boundary conditions and retrieve a system of nine homogeneous
equations to be solved for nine unknown constants.
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Results
Numerical package

For both validation of theoretical results and nonlinear computations,
we use the Gerris Flow Solver, a highly versatile volume-of-fluid
package, designed with multiphysics problem solving capabilities.



29

Electrohydrodynamic
Control in Microfluidics

Radu Cîmpeanu

Introduction
Motivation

Mathematical Model
Geometry

Governing equations

Nondimensionalization

Interfacial and boundary
conditions

Stability
Approach

Results
Numerical package

14 Validation

On-off protocols

Relay structures

Polymer Self-Assembly

Conclusions and
Future Directions
Future goals

Dept. of Mathematics
Imperial College London

United Kingdom

Results
Realistic fluid setup

Property [units] Water at 25◦C Olive oil at 25◦C

Density [kg/m3] 998 918
Viscosity [Pa · s] 8.95 · 10−4 0.081

Permittivity [kg−1s4A] 80.4ε0 3.1ε0

I ε0 is the permittivity of free space, 8.85 · 10−12 m−3kg−1s4A2.
I The surface tension between olive oil and water is 0.02 kg · s−2.
I We use a channel of height 0.01 m under the action of a

gravitational acceleration of 9.80655 m · s−2.
I A strong destabilization of the system occurs for an electric field

strength Ec ≈ 105 V/m for a large array of wavenumbers of the
initial perturbation.

I Electric breakdown value for water: E ≈ 1.35 · 107 V/m;
E ≈ 1.755 · 107 V/m for olive oil.
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Results
Validation

I Numerical validation of the linear theory has been performed via
direct numerical simulation for several test cases.

I The growth rates have been extracted using sliding least squares
methods.

I Excellent agreement is found between linear theory and the early
stages of the full computational experiments.

I For this verification, we have
chosen parameters:
r = ρ1/ρ2 = 1.087,
m = µ2/µ1 = 90.5,
ε = ε1/ε2 = 25.93,
µ̃ = 4.4 · 10−4, σ̃ = 0.0362
and V̄ = 0.1 to 0.5.

I This corresponds to an O(1)
mm-sized system (7.5 mm)
subjected to electric fields of
up to 107 V/m.
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Results
On-off protocols - RC and DTP, Proc. MNF, 2014

A strong destabiziling uniform electric field is imposed in order to
generate interfacial dynamics that enhances mixing within the
confined geometry.
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Results
On-off protocols - RC and DTP, Proc. MNF, 2014

Given variance of the concentration field in the domain σ, define

degree of mixing = 1− σ2(t)
σ2

max
, (23)

where σ2
max is the variance of the perfectly segregated state [7]. The

variance is naturally defined as σ2(t) =< c2(t) > − < c(t) >2, where
c denotes the entire concentration field at time t .



29

Electrohydrodynamic
Control in Microfluidics

Radu Cîmpeanu

Introduction
Motivation

Mathematical Model
Geometry

Governing equations

Nondimensionalization

Interfacial and boundary
conditions

Stability
Approach

Results
Numerical package

Validation

18 On-off protocols

Relay structures

Polymer Self-Assembly

Conclusions and
Future Directions
Future goals

Dept. of Mathematics
Imperial College London

United Kingdom

Results
On-off protocols

Using the same type of metrics for the degree of mixing, we return to
the case of the realistic fluid setup (water-oil system) and propose a
generalisation of the previous protocol to

V2(x , L/2, t) =



C + Ax +
A
2

(
− 2
π

tan−1(δ′(x + 0.5))−

− 2
π

tan−1(δ′(x − 0.5))

)
if ton,

0 if toff ,

I This acts as a dielectrophoretic adjustment, in which C is the
background voltage potential difference and constant parameter
A dictates the slope of the linear variation of the electric field
across the geometry.

I The imposition of periodic boundary conditions in the horizontal
directions require a special handling of the endpoints, which
prompts the usage of a special smoothing function, generating a
voltage distribution without discontinuities.
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Results
On-off protocols

By varying ton-toff intervals, as well as parameter A, we create a series
of eight electric field protocols that act on the realistic fluid setup.

The degree of mixing is however not the only method of assessing the
performance of the proposed electric field protocols.
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Microfluidic Mixing
On-off protocols in three dimensions - symmetric case
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Microfluidic Mixing
On-off protocols in three dimensions - asymmetric case
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Relay structures
Construction - RC and DTP, Royal Soc. Phil. Trans. A, 2014

We also propose a mechanism for introducing pumping by generating
a travelling wave voltage distribution on one or both of the electrodes
[5,6], with different imposed properties (velocity, amplitude).

A Dirichlet boundary condition of the following type can be used

V̄ (t) = C +
2Ar

π

[
tan−1

(
x − xL − Ur t

δ′

)
− tan−1

(
x − xR − Ur t

δ′

)]
,

making sure the electrostatic approximation is still valid. We monitor
the induced flux in the flow via

F (t) =

+0.5∫
−0.5

u(0, y , t)dy . (24)
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Relay structures
Flux generation I - RC and DTP, Royal Soc. Phil. Trans. A, 2014

The velocity profiles become more pronounced as we advance in time.
The effects from the lower part of the domain (where the boundary
condition is imposed) are gradually transmitted to the entire channel.
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Relay structures
Flux generation II - RC and DTP, Royal Soc. Phil. Trans. A, 2014

A careful analysis of several test cases reveals that the amplitude of
the travelling wave is the primary factor contributing to the pumping
effect, while the velocity itself plays a secondary role within the
parameter range considered.
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Polymer Self-Assembly
Motivation

Electric field effects in small geometries have also been studied in the
context of polymer self-assembly and integrated circuit component
construction, proving remarkable versatility.
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Conclusions and Future Directions
Closing remarks

The existing project was focused on the following objectives:
I the construction of a mathematical framework for the study of the

Rayleigh-Taylor instability in an electrohydrodynamical context in
small scale geometries;

I the usage of high-performance specialised numerical software
capable of capturing the physical behavior of the studied model;

I the rigorous testing of both linear and nonlinear scenarios,
highlighting some key features in the flow;

I the modeling of efficient electrically induced mixing protocols that
could be used in experimental setups.
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Conclusions and Future Directions
Future goals

The most relevant extensions to the present research are directed
towards the generalization of the current machinery. Possible
applications include:

I extension of the physical domain to different types of channels;
I improved performance and manipulation of the relay structures;
I integration of previosuly described protocols in devices such as

time pulsed T-mixers;
I concrete physical applications with real world fluid models and

(possibly) experimental studies;
I improvement of the numerical package Gerris in order to be able

to capture the relevant information in the previous suggestions.
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