

Adaptive spectral wave forecasting

Stéphane Popinet, Richard Gorman, Graham Rickard, Hendrik Tolman

> NIWA NOAA/NCEP

Spectral description of a wave field

Statistical distribution of wavelengths and propagation directions (k, θ)

Spectral wave modelling

- Action density spectrum: $N(\mathbf{x}, k, \theta)$
- Based on Hasselman's (1970s) evolution equation for action density

$$\partial_t N + \nabla \cdot \mathbf{c_g} N + \partial_k \dot{k} N + \partial_\theta \dot{\theta} N = S/\sigma$$

- Source terms S: wind-generated waves, non-linear wave/wave interactions, wave breaking etc...
- Very expensive: typically need to solve 25² advection problems per grid point

 \Longrightarrow cost scales like $C\Delta_x^{-2}$ with C a large constant

 Advection in x-space using Gerris, other terms computed using WaveWatch III (Tolman, NOAA/NCEP)

Cyclone-generated wave field

- Holland cyclone model
- Ramped linearly over 25 hours
- Moves south at 555 km/day
- Clockwise rotation

12 hours, max. wind 86 km/h, max. wave 3 m

24 hours, max. wind 173 km/h, max. wave 14 m

36 hours, max. wind 180 km/h, max. wave 20 m

48 hours, max. wind 180 km/h, max. wave 20 m

In the eye of the cyclone

48 hours, max. wind 180 km/h, max. wave 20 m

Computing times

Global forecast snapshot, NOAA/NCEP 1/9/2009

Significant wave height, dark red 8 metres, resolution 0.35 degrees, regular grid

Truncation error analysis

 ${\rm Dark\ blue} < 1 \ {\rm mm,\ dark\ red} > 5 \ {\rm cm}$

Adaptive mesh

Truncation error < 5 cm, Dark red 0.35 degrees, dark blue 5.6 degrees

Adaptive resolution

Truncation error < 5 cm, 0.35 degrees, \approx 30,000 grid points

Constant resolution

0.35 degrees, \approx 300,000 grid points

Cumulative frequency

Scaling of simulation size

Conclusions and future work

- Adaptivity changes the scaling of computing costs: $C\Delta_x^{-p}$, p is now (much) smaller than the number of dimensions
- This leads to orders-of-magnitude savings \implies new possibilities
- Benefits of adaptivity can be assessed beforehand using the scaling analysis we presented
- Popinet, Gorman, Rickard and Tolman, Ocean Modelling, 34, 2010

Work in progress

- Application to cyclone-generated waves/hazard forecasting in the Pacific region
- Extension to waves in shallow water

Because it is an approximation of the *fractal dimension* of the solution

Classical example: the Sierpinski triangle

has a fractal (Minkowski or "box-counting" or "information") dimension of \approx 1.6.

In other words, the cost of describing such an object using quadtrees would scale as $N^{1.6}$ not $N^2.$