
1 Constant density

We consider the vertical cross-section in a wind-driven lake of constant depth H and horizontal
extent L. The kinematic viscosity ν is constant. A no-slip condition is applied on the bottom
boundary (u=w=0). The top boundary is a “rigid lid” and the effect of the wind is modelled as
an imposed velocity gradient i.e. w = 0 and ∂zu= τ . The left and right wall use “slip conditions”
i.e. (u = 0, ∂xw = 0). The assumption of a rigid lid rather than a free surface is justified when

the speed of the gravity waves gH
√

is large compared to the physical velocities (i.e. the Froude
number is small) or equivalently, when the slope of the free surface is small. Using dimensional
arguments, this slope can be estimated as

ν τ

gH

The independent dimensionless numbers controlling the problem then are:

• the aspect ratio a=L/H ,

• a Reynolds number Re=H2 τ/ν,

• the free-surface slope α= ν τ/gH .

In the following, we consider only dimensionless quantities where H has been taken as length
scale and 1/τ as time scale. Note that the rigid-lid approximation is only valid in the limit of
vanishing α.

An analytical solution for this problem can be obtained in the limit of large a and assuming
a parallel flow. A parabolic velocity profile of the form

u(z) =Az2+Bz+C

is sought. An additional constraint must thus be added to the two boundary conditions above in
order to close the system. This is provided by observing that volume conservation requires that
the depth-averaged velocity be zero. One then easily gets

u(z)=
z

4
(3 z − 2).

This can also be used to refine the free-surface slope estimate using the equilibrium relationship

∂z2

2 u=
α′

α
,

where we assume hydrostatic balance. For the parabolic velocity profile, this gives

α′=
3

2
α (1)

In the case of a finite aspect ratio a, we expect this solution to be valid only in the center of the
lake, where the hypothesis of parallel flow should be verified. The “upwelling” and “downwelling”
zones close to the side walls will of course not be described by this solution.

To verify this hypothesis, we used Gerris to solve the incompressible Navier-Stokes equations
in a rectangular domain with the boundary conditions given above. For low Reynolds numbers,
a stationary solution to this variant of the “lid-driven cavity” problem can be readily obtained.
Figure 1 illustrates the stationary solution obtained numerically for a = 4, Re = 1, discretised
with 32 points vertically and 256 points horizontally (only one in 8 vectors is plotted horizon-
tally).
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Figure 1. Velocity field for the wind-driven lake. a=4, Re=1.

Figure 2 illlustrates the velocity profile obtained numerically in the center of the lake
together with the analytical solution.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

u

z

analytical
Gerris

Figure 2. Velocity profile in the center of the lake. a=4, Re=1.

It is clear that the analytical solution is a good approximation even for this low aspect ratio.
An indication of the lower limit of validity of the solution is given by Figure 3 and 4 where the
aspect ratio has been varied from 1 to 8 while keeping all the other parameters constant.
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Figure 3. Convergence of the velocity profiles in the center of the lake as a function of the aspect ratio.

Re=1.
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Figure 4. Values of pressure at the bottom together with the analytical solution (equation (1)). a = 4,

Re=1.

What is the effect of the Reynolds number? Figure 5 illustrates the stationary velocity field

obtained for a = 4 and Re = 400. There is a clear lateral asymmetry with a strong localised
downwelling and a broad and weak upwelling compared to Figure 1. Note that this is similar to
what is classically observed for the lid-driven cavity problem at comparable Reynolds numbers
(with aspect ratios close to unity).

Figure 5. Velocity field for the wind-driven lake. a=4, Re= 400.

This asymmetry also affects the assumption of parallel flow in the center of the lake and the
analytical solution is only recovered for significantly larger aspect ratios (Figure 6). The same
holds for the pressure profiles (Figure 7).
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Figure 6. Convergence of the velocity profiles in the center of the lake as a function of the aspect ratio.

Re=400.
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Figure 7. Convergence of the bottom pressure profiles as a function of the aspect ratio. Re= 400.

The lateral upwelling and downwelling are important features of the wind-driven circulation
and it is useful to caracterise their lateral extent. This can be done using several methods.
Given the good predictions in the center of the lake obtained with the simple parallel flow ana-
lytical model, one way to caracterise the lateral currents is to measure the departure from the

parallel flow analytical solution. We define the depth-averaged relative root-mean-square (RMS)
error norm as

eRMS(x)=

∫

(u(x, z)− uanalytical(z))
2 dz

√

/

∫

uanalytical
2 (z) dz

√

,

where
∫

uanalytical
2 (z) dz

√

≃ 0.091.
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Figure 8 illustrate this error distribution for Re = 1 and Re = 400 for different aspect ratios.
Consistently with Figures 3 and 6, the error in Figure 8.a is negligible in the center of the lake
for aspect ratios larger than 4, while the error in Figure 8.b is still significant for a = 16. The
asymmetry of the flow for Re= 400 is also evident.
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Figure 8. Error distribution eRMS(x) for (a) Re=1 (b) Re= 400.

It is clear that as the central part of the lake converges toward the parallel flow solution
(with increasing aspect ratio), the solutions for the lateral upwelling and downwelling should
become independent from each other and thus from the aspect ratio. This can be verified by
changing the reference of the horizontal axis of Figure 8 to make it coincide with the lateral
boundaries. This is what is done in Figure 9.
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Figure 9. Error distribution eRMS(x) for (a) Re=1 (b) Re= 400.

An alternative description of the lateral upwelling and downwelling is given by looking at the
depth-averaged vertical velocity profile (Figures 10 and 11).
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Figure 10. Depth-averaged vertical velocity w̄(x) for (a) Re=1 (b) Re= 400.
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Figure 11. Depth-averaged vertical velocity w̄(x) for (a) Re=1 (b) Re= 400.

The lateral extent of the downwelling region can be quantified for instance by the width (a/
2−x0) where x0 is the location where

w̄(x0)/min (w̄(x))x> 0.1

Figure 12 shows the dependency of the downwelling extent on the Reynolds number. The down-
welling width seems to reach an asymptote for large Reynolds numbers. To check that this
result is not affected by numerical viscosity two resolutions are shown in Figure 12.
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Figure 12. Width of the downwelling zone as a function of the Reynolds number for a = 4. Two spatial

resolutions are shown to check for convergence.
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Figure 13. max (u(x, z)) and min (u(x, z)) as functions of x for Re=1 (top) and Re= 400 (bottom).
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Figure 14. Position znull(x) where u(x, znull) = 0 as a function of x for Re = 1 (top) and Re = 400

(bottom).

1.1 Parabolic bathymetry

We now consider a lake with variable depth

H(x)= (1− hmin)

(

1− 4
x2

a2

)

+hmin

with hmin= 0.1

Figure 15. Velocity field for the wind-driven lake. a=4, Re=1.
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Figure 16. Convergence of the velocity profiles in the center of the lake as a function of the aspect ratio.

Re=1.

Figure 17. Velocity field for the wind-driven lake. a=4, Re= 400.
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Figure 18. Convergence of the velocity profiles in the center of the lake as a function of the aspect ratio.

Re=400.

In contrast to the constant-depth case, we expect the boundary currents to scale like the
bathymetry so that the relevant variable now is x/a. This scaling is confirmed by the conver-
gence observed for large aspect ratios in Figure 19. The magnitude of the vertical velocity is
expected to scale like 1/a (Figure 19).
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Figure 19. Normalised depth-averaged vertical velocity a w̄(x) as a function of normalised abscissa x/a

for (a) Re=1 (b) Re= 400.
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Figure 20. max (u(x, z)) and min (u(x, z)) as functions of x for Re=1 (top) and Re= 400 (bottom).
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Figure 21. Position znull(x) where u(x, znull) = 0 as a function of x for Re = 1 (top) and Re = 400

(bottom).
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Figure 22. Pressure at the bottom for Re=1 (top) and Re= 400 (bottom).

1.1.1 Three-dimensional paraboloidal bathymetry

The depth is described by

H(x, y)= (1− hmin)

(

1− 4
x2+ y2

a2

)

+ hmin

with hmin= 0.1
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Each dimension is discretised with 32 grid points. The overall stationary circulation is
depicted in Figure 23. The vertical profile of horizontal velocity at the center of the lake is given
in Figure 24 together with the analytical model. While the 3D solution does verify the top and
bottom boundary conditions, it does not verify the additional constraint of volume conservation
in a vertical slice (i.e. nullity of the depth-averaged horizontal velocity). This is not surprising
since the flow structure is clearly three-dimensional and horizontal divergence also needs to be
taken into account when looking at volume conservation.

(a)

(b)

Figure 23. Velocity field for the three-dimensional wind-driven lake. a=8, Re= 400. (a) cross-section at

y = 0. (b) cross-section at z = 0. The velocity field is indeed two-dimensional rather than the “one-dimen-

sional” field of the hydrostatic version. I don’t really have an explanation for the difference: one guess is

that the missing terms in the hydrostatic approximation (either the missing horizontal diffusion of the

vertical velocity or the non-hydrostatic pressure terms) cause the field to be 1D rather than 2D.
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Figure 24. Vertical profile in the center of the lake. a=8, Re= 400.
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Figure 25. Depth-averaged horizontal velocity field. a=8, Re= 400.

Figure 26. Depth-averaged vertical velocity field. a=8, Re=400.

Figure 27. Depth-averaged pressure field. a=8, Re= 400.

2 Stratified lake

I have kept this section for now. I could easily do a smooth, diffusive stratification, however
there are two problems I can see when doing this: 1) are there stationary solutions? 2) are there
analytical solutions for the stationary solutions? If it is unstationary, it is more complicated.
May be we could forget about stratification to start with?

We now consider the case of a stratified lake. To model the stable thermal stratification
often observed in lakes, we assume a vertical density profile of the form

ρ(z) = ρ0−Heaviside(z −H +Hthermocline)∆ρ.
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If ∆ρ/ρ0 is small compared to one, we can use a Boussinesq approximation and this results in
an additional source term − g ′ Heaviside(z − H + Hthermocline) for the vertical component of
velocity, with g ′ the reduced gravity

g ′=
∆ρ

ρ0
g.

Through dimensional arguments one can find that the equilibrium slope αt of the thermocline
should verify the relation

g ′αt ∝ ν τ ,

for vanishing αt.

We then need to consider two additional independent dimensionless parameters

• b=1−Hthermocline/H , set to 3/4 in what follows,

• and the thermocline slope

αt=
ν τ

g ′H

If we again assume parallel flow, an analytical solution can be sought for the horizontal velocity
profile in a vertical cross-section, of the form

u(z)=A1 z
2+B1 z+C1 for z > b,

u(z)=A2 z
2+B2 z+C2 for z6 b,

with the boundary conditions

∂zu=1 at z=1,

u=0 at z=0,

u|z>b= u|z<b at z= b,

∂zu|z>b= ∂zu|z<b at z= b,

and the volume conservation conditions

∫

b

1

A1 z
2+B1 z+C1 dz =0,

∫

0

b

A2 z
2+B2 z+C2 dz =0.

Developing gives

2A1+B1 = 1

A1 b
2+B1 b+C1 = A2 b

2+B2 b

2A1 b+B1 = 2A2 b+B2

A1 (1− b3)/3+B1 (1− b2)/2+C1 (1− b) = 0

A2 b
3/3+B2 b

2/2 = 0

For b=3/4, this readily gives

u(z) =
30 z2− 47 z+ 18

13
for z > 3/4,
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u(z)=
− 2 z2+ z

13
for z6 3/4.

This can be used to refine the estimates of the thermocline and surface slopes. Assuming hydro-
static balance, the horizontal pressure gradient is given by

∂xp= gα′ for z > 3/4+αt
′ x,

∂xp= gα′+ g ′αt
′ for z6 3/4+αt

′ x.

Balancing the horizontal pressure gradients and viscous stress then gives

α′ =
60

13
α (2)

αt
′ = − 64

13
αt (3)

The interface between the two layers is tracked numerically using a Volume-Of-Fluid (VOF)
scheme which is non-diffusive. Figure 28 illustrates the stationary velocity field as well as the
interface between the two layers.

Figure 28. Velocity field for the wind-driven lake. a=4, Re= 400, αt=1/400.

Figure 30 illlustrates the convergence of the velocity profile obtained numerically in the
center of the lake toward the analytical solution.
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Figure 29. Convergence of the velocity profiles in the center of the lake as a function of the aspect ratio.

Re=400, αt=1/400.
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Figure 30. Convergence of the surface pressure profiles as a function of the aspect ratio. Re= 400, αt=

1/400. The analytical solution is given by (2).
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Figure 31. Convergence of the thermocline profiles as a function of the aspect ratio. Re= 400, αt = 1/

400. The analytical solution is given by (3).
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Figure 32. Error distribution eRMS(x) for Re= 400, αt=1/400.
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Figure 33. Error distribution eRMS(x) for Re= 400, αt=1/400.

18 Section 2


