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At the free surface, the shear stress is evaluated by the wind velocity:

τs = ρaCDu2

w (1)

with ρa density of air, CD = wind drag coefficient, and eventually, uw =
wind velocity at 10 m from the surface. By definition one introduces u∗s the
free surface shear velocity

u2

∗s ≡ τs/ρ (2)

with ρ density of water

Because of a shear linear in z and a constant diffusion constant, we must
assume a parabolic velocity profile

u(z) = u∗s[A(
z

d
)2 + B

z

d
+ C]. (3)

To determine the constants A, B and C, we set the following conditions

1. At the free surface, the shear stress is evaluated by the wind velocity:

ρDeffective

∂u

∂z

∣

∣

∣

∣

z=d

= τs, (4)

2. At the bottom, the velocity is equal to zero:

u(0) = 0. (5)

3. The depth-averaged velocity equals zero:

1

d

∫ d

0

u(z)dz = 0 (6)
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From these conditions, we find the constant A, B and C:

A =
3u∗sd

4Deffective

, (7)

B = −

u∗sd

2Deffective

, (8)

C = 0. (9)

We can finally compute the stress at the bottom due to the presence of a
non zero current:

τbTurb = −

1

2
ρu2

∗s (10)

it is independent on Deffective

Parameters
CD = 2.6 · 10−3

ρa = 1.2041
ρ = 998.2071
uw = 1
Deffective is chosen so that us = 0.1 at the surface is imposed

Deffective =
τsd

4ρus

Aspect ratio Lz = 1; Lx = 40

0.1 Resuspension by wind-induced current : case of the parabolic
eddy viscosity distribution (Tsanis corrected)

Here we consider just a turbulent viscosity due to shear without thermal
convection. For the moment we do not use this formulation.
To simulate the wind-driven flow in the shallow lake, we use a parabolic
eddy viscosity distribution given in dimensional form by [3]:

Dt(z) = (λu∗sd) (z + zb/d) (1 − z/d + zs/d) (11)

where zb and zs are the bottom and surface characteristic lengths, respec-
tively, d is the water depth, and λ is a constant to characterize the intensity
of turbulence.
Since the shear stress should remain linear in z, one assumes a double-
logarithmic velocity profile first proposed by [3]:

u(z) = Au∗s ln(1 + z/zb) + Bu∗s ln(1 − z/(zs + d)) + C. (12)
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zb might depend on the plant rugosity and zs the convection .
To determine the constants A, B and C, we set the following conditions [2]:

1. At the free surface, the shear stress is evaluated by the wind velocity:

ρD(z)
∂u

∂z

∣

∣

∣

∣

z=d

= τs, (13)

2. At the bottom, the velocity is equal to zero:

u(0) = 0. (14)

3. The depth-averaged velocity equals zero:

1

d

∫ d

0

u(z)dz = 0 (15)

To find the constants A and B we differentiate u(z):

∂u

∂z
= u∗s

[

A

zb + z
−

B

zs + d − z

]

. (16)

So, given the condition 1, dividing both sides by ρu∗s, we obtain :

1 = λzshA − λ(1 + zbh)B, (17)

From the condition 3, one finds that

B = −

q1

q2

A. (18)

Introducing the following abbreviations (note that they are different by the
ones in [2]) :

zsh = zs/d, (19)

zbh = zb/d, (20)

p1 = zsh, (21)

p2 = (1 + zbh), (22)

q1 = (1 + zbh) ln(1 + 1/zbh) − 1, (23)

q2 = zsh ln(1 + 1/zsh) − 1, (24)

we obtain

A1 = λA =
q2

zshq2 + (1 + zbh)q1

, (25)

B1 = λB =
−q1

zshq2 + (1 + zbh)q1

, (26)

C = 0. (27)
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Given these values for the coefficient A and B, we can finally compute the
stress at the bottom due to the presence of a non zero current:

τbTurb = ρDt(z)
∂u

∂z

∣

∣

∣

∣

z=0

= ρu2

∗s [(1 + zsh)A1 − zbhB1] . (28)

Actually it is independent on λ.

Parameters
CD = 2.6 · 10−3

ρa = 1.2041
ρ = 998.2071
uw = 1

and

λ = 0.35
zs/d = 2.2 · 10−4

zb/d = 2 · 10−3

u∗s =

Aspect ratio Lz = 1; Lx = 40
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