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coflowing jet atomization (rocket engines, Formula 1 racing cars)	
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Interpretation 1: the simulation of liquid jet atomisation  
requires enormous ressources. It is thus a grand challenge similar to 
the DNS of turbulent flow. The one with the most robust code and the 
biggest computer wins. 

Interpretation 2: A series of mechanisms are involved in the breakup 
of the jet and generation of the droplets. Explaining these mechanisms 
and making quantitative predictions solves the problem.  
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Lasheras, Hopfinger,Villermaux, Raynal, Cartellier …, 
(San Diego, Grenoble and  Marseille)        

Atomization of co-axial jets : experiments with air/water jets	
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Problem 1: predict the transverse wavelength λ or the frequency f	
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Problem 2 : predict λRT . λRT  refers to the theory of Cartellier 
and Hopfinger but in fact several “Rayleigh-Taylor” 
mechanisms have been suggested in the litterature.  	



     Photograph: Cartellier and Matas 
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Kelvin-Helmholtz instability 

perform simulation of unstable shear flow 
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Blue : theory	


Green: computation 
with harmonic mean	


Red : computation 
with arithmetic 
mean	



Full DNS and  Orr-Sommerfeld agree	



Boeck & Zaleski PoF 2005, Boeck, Li, Lopez-Pages, Yecko & Zaleski TCFD 2007, 
Bagué, Fuster, Popinet, Scardovelli and Zaleski, PoF 2010.  

timesteps 

|h| 
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Error level in percentage points :  

Gerris is much more accurate than Surfer but the error stops decreasing for 256 ! 
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Re_g = 4000, 
We_g = 4000 
r = 10 
m = 0.025  
vorticity. 
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Diesel 
jet  
conditions 

Bagué 
Popinet 
Yarlagadda 

It is a 
Gerris  
example  
now !  
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More realistic engineering: 3D conical jet 
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Δx =  9 microns Δx =  28 microns 

Distribution of droplet sizes (PDF) depends on grid size !   
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dx =  9 microns 

experiment 

But agrees with experiment 
at finest resolution  
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Clearly, we are not 
world champions in 
terms of hardware 
usage 
. 
Shinjo and Uemura 
JAXA supercomputer 
Δx = 350 nm 

5760 cores 
for 410 hours 
6 billion grid points 
(uniform) 

We=14000 
Re=1470 
U = 100 m/s 
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- Need for better parallelism. (although we get 6 billion grid 
points equivalent with 40 cores ...) 

- Need for multiscale treatment : combine DNS with some type of 
subgrid modelling, for certain regions and certain physics, such 
as droplets in dilute regions (far from the core).  
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Interpretation 2: physical analysis of the transverse 
wavelength.  

Analyze the flow as a spatially-developping mixing layer 
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Fully spatial 2D DNS to simulate setup of Grenoble’s 
 planar sheet experiment. Large-scale 
structures are 2D.   

Gas 

Liquid 

view 
from 
above 

separator plate – super -important 
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Linear stability theory of the Kelvin-Helmholtz instability:  

(a)  Potential flow (except at interface), Inviscid, Piecewise linear  
profiles (Marmottant, Raynal, Villermaux, Cartellier, Matas, others ...)  

(b) Viscous, Error-function profiles (Yecko, Fullana, Boeck, Zaleski, 
 Gordillo, Perez-Saborid, Ganan-Calvo, Spelt, Valluri, O’ Naraigh... )  

  A mechanism of Atomization :	


the  Kelvin-Helmholtz Instability	
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19                           20                             21   .
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boundary conditions on interface(s) 
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Nondimensional form based on gas layer velocity and thickness.   
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Broken line profile 
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Continuous profile 
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Viscous linear stability problem 

boundary conditions on interface(s)"
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boundary conditions on interface(s)"
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Viscous linear stability problem II 
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viscous case 
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Reynolds number influence 
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Air-water case Re = 3 × 104   We = infinity"

I : connects to inviscid KH at very 
high Re 

II : H-mode (zero Re mode) 

III : similar to Tollmien-Schlichting 

It is the interaction of the H mode (mode I) and the inviscid mode (mode II) 
that explains the difference between the Orr-Sommerfeld and inviscid results.  
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What is the new H mode ?  

-  named after Hooper and Boyd (1982) and Hinch (1984).  
-  a mode at Re=0 
-  zoom in on vicinity of the interface 

zoom gives Couette flow 
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-  The H mode is an instability of Couette flow at zero Re.  The scaling of the H 
mode can be explained as follows: 

-   the only time scale in the shear layer is  

1 /ωg = δg /Ug

thus the only length scale is  

l =
νg

ωg

=
δg
Reg

implies that the (dimensionless) most unstable wavenumber  grows like  

Reg
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H-mode branch is shifted in log diagram when Re is increased 

Air-water case Re = 2 103 , 104 , 4 104 , 1.2 105 ,  We = infinity 
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Numerical solutions of the Orr-Sommerfeld  
equations in the range of the experiments show 
 that dimensional wavelength decreases like 

λ ≈Ug
−1

But experimental results show rather  

λ ≈Ug
−1/2

which is the result expected for the inviscid mode !  
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-1/2 slope from  
inviscid theory. 

H-mode obtained 
from Orr-Sommerfeld 
Computations. -1 
slope ! ! !  

But the theory fails…. 
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Inviscid theory 
also « fails ».  
Its prediction 
are here .. 
but with the 
correct scaling.  



37 

We aere convinced that the real world is viscous ... but the experiment 
can be interpreted only using inviscid scaling theories !  

Simple explanations: 

- the experiment is wrong (after all, it took « them » ten years to fix the 
errors in the initial measurements   ).  
- the Gaster transformation does not apply (but would this change the 
scaling?) 

Gerris will at least allow us to verify the experiment 
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Back to the « Grenoble » 2D setup.  

Gas 

Liquid 
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Elementary multiscale treatment: Navier-Stokes with variable minimum grid size 
according to a subdivision of the computational domain.  

Gas 

Liquid 

small 
minimum Δx	



medium 
minimum  Δx	



large 
minimum Δx	
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More refined multiscale modelling ?  

E and Enquist (Comm. Math. Sci, 2003) introduce the following 
typology :	



•  Type A problems : problems that require a localised effort to capture 
explicitly the smallest scales. Typically a boundary layer. 	



•  Type B problems: large regions containing a homogeneous 
distributions of smaller sales for which an effective larger-scale model 
must be found. Typically the derivation of Navier-Stokes from kinetic 
theory, or an averaged multiphase-flow model. 	
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Dense spray – 
convoluted interfaces :  
Type A region.  Type B region: 

dilute spray.  
Intermediate region: Type A 
regions with progressive 
coarsening downstream.  
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Dense spray – 
convoluted interfaces : 
need DNS. No subgrid 
scale model will work.  

Dilute spray: 
droplets may be 
accurately modelled 
as Lagrangian 
particles. 

Intermediate region: requires 
work and subtelty. 

Simulation methodology 
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Turn to full, spatially developping DNS  

Fuster et al. 2009. IJMF 
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Viscous, Orr-Sommerfeld theory is verified !!  

Not the real experimental parameters however (not air-water properties) 

near nozzle 
all stations 
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Simulation with a separator plate at larger density ratio (1/r) 

m	

 r	

 Reg	

 Rel	

 Weg	

 Wel	

 M	



0.017	

 0,01	

 2640	

 290	

 19	

 8	

 2,4	
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Conclusion 

We are not solving the problems that we think we are solving 
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The End 


