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Introduction

Mampitiyarachchi, S. (2006).
‘3D flow visualization of a micro air vehicle with winglets’.
BE thesis,
Dept Aerospace, Mechanical, & Mechatronic Engg,
The University of Sydney
http://gfs.sf.net/papers/mampiti2006.pdf
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Basic framework

The Gerris wind-tunnel

The basic framework of Gerris—an arbitrary obstacle immersed in
a flow through a rectangular box—coincides neatly with that of
aerodynamics.

G. D. McBain
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Two-dimensional aerodynamics

Aerodynamics in two dimensions

Much of classical aerodynamics takes place in the plane.

The generation of lift is essentially two-dimensional.

G. D. McBain
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Two-dimensional aerodynamics

UIUC Airfoil Coordinate Database

$ wget http://www.ae.illinois.edu/m-selig/ads/coord/naca2412.dat

$ cat naca2412.dat

NACA 2412

1.0000 0.0013

0.9500 0.0114

0.9000 0.0208

...

1.0000 -0.0013

$ shapes <(tail -n +2 naca2412.dat) > naca2412.gts

G. D. McBain
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Two-dimensional aerodynamics

gts2pov: rapid visualization of GTS aerofoils

G. D. McBain
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Three-dimensional aerodynamics

Aerodynamics in three dimensions

There are some three-dimensional effects in aerodynamics which
are too important to ignore, viz.:

wingtip vortices and

induced drag.

G. D. McBain
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Three-dimensional aerodynamics

wingshapes
taper
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Three-dimensional aerodynamics

wingshapes
sweep
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Three-dimensional aerodynamics

wingshapes
dihedral
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Three-dimensional aerodynamics

wingshapes
twist

G. D. McBain
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Three-dimensional aerodynamics

wingshapes
taper, sweep, dihedral, & twist

G. D. McBain
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Imposed mesh isotropy

‘It is also important to note that a major restriction of the
quad/octree structure is that it imposes a locally spatially isotropic
refinement. This can be an issue in highly non-isotropic flows (i.e.
boundary layers, large scale atmospheric flows etc. . . ).’
(Popinet 2003, J. comput. Phys.)

G. D. McBain
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Sharp angles or thin bodies

‘This solid boundary description assumes that the geometries
represented do not possess features with spatial scales smaller than
the mesh size. In particular, sharp angles or thin bodies cannot be
represented correctly. This can be an issue for some applications’
(Popinet 2003, J. comput. Phys.)

G. D. McBain
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The circulation theory of lift

Pressure difference

The pressure above must be less. . .

. . . than that below.

G. D. McBain
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The circulation theory of lift

Bernoulli’s equation

p + ρq2

2 = const.

therefore, velocity above must exceed that below.

G. D. McBain
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The circulation theory of lift

Circulation

Γ ≡ −
∮
S
q · τ̂ dS

Need a net positive circulation.

G. D. McBain
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The circulation theory of lift

Stagnation points

Typically there are two main separatrices.

The question is where they are.

G. D. McBain
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Application I: the starting vortex

The starting vortex

Circulation around any fluid-loop is preserved.
Because the upper and lower airflows rejoin at the rearward
separatrix, the contour which is the aerofoil at any instant is
broken if advected backwards in time.
Advecting forwards in time, any contour initially containing the
aerofoil must also contain some of the wake. This fluid issuing
through the trailing edge contains a concentrated vortex, equal and
opposite to the circulation generated around the aerofoil.

G. D. McBain
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Application I: the starting vortex

Visualizing the starting vortex in gerris2D

G. D. McBain
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Kutta–Joukowsky theorem

Calculating lift and drag in two dimensions

G. D. McBain
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Kutta–Joukowsky theorem

Another approach: GfsPoisson

Instead of solving the Euler equations,

P.-Y. Lagrée has demonstrated another inviscid method

assuming it has irrotational circulation

calculate φ from Neumann problem (displacement effect)

calculate ψ from Dirichlet problem (circulation)

each in gerris2d with GfsPoisson

combine with Kutta–Joukowsky condition.

Very fast, very accurate!

G. D. McBain
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Consequences of finite span

Pressure difference and wingtips

Lift implies higher pressure below than above.

This drives air around wingtips.
G. D. McBain
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Consequences of finite span

Pressure difference and wingtips

Lift implies higher pressure below than above.

This drives air around wingtips.
G. D. McBain
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Consequences of finite span

The starting vortex in three dimensions

Vortex lines cannot end in the fluid.

The starting vortex must originate from the wingtips.

G. D. McBain
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Application II: wingtip vortices

Visualizing the wingtip vortices in gerris3D

G. D. McBain
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Application II: wingtip vortices

Calculating loss of lift in three dimensions

G. D. McBain
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Successes:
really easily demonstrated & visualized:

starting vortex
trailing vortex-sheet roll-up
wingtip vortices

wingshapes for taper, sweep, dihedral, & twist

Open questions:
Can we get quantitative lift & drag? Try:

increasing wind-tunnel size
nondefault pressure-projection parameters

How does the Euler solver get the Kutta–Joukoskwy condition
right? One often reads that the flow is inviscidly indeterminate
and only determined by viscosity. . .
What next? Viscosity, or boundary layer & wake?

G. D. McBain
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