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Abstract

An adaptive meshprojection method for the time-dependent incompressibleEuler
equations is presented. The domain is spatially discretisedusing quad/octreesand
a multilev el Poissonsolver is usedto obtain the pressure.Complex solid boundaries
are represented using a volume-of-
uid approach. Second-orderconvergencein space
and time is demonstrated on regular, statically and dynamically re�ned grids. The
quad/octreediscretisation provesto bevery 
exible and allowsaccurateand e�cien t
tracking of 
o w features. The sourcecode of the method implementation is freely
available.
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1 In tro duction

E�cien t techniquesfor the numericalsimulation of low Mach number 
o wshavea large
rangeof applications: from fundamental 
uid mechanicsstudiessuch as turbulence or
interfacial 
o ws,to engineeringandenvironmental problems.For time-dependent 
o ws,
the �nite speedof propagation of sound wavescan lead to strong restrictions on the
maximum value of the timestep. While �ltering techniquescan be applied to try to
lift this constraint, a better approach is to assumethat the 
uid consideredis strictly
incompressible.This introducesan elliptic problem for the pressurewhich expresses
the instantaneouspropagation of pressureinformation throughout the entire domain.
In practice, this leadsto the fundamental changefrom a spatially explicit to a spatially
implicit problem.
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Projection methodsand multigrid solvershaveprovedan e�cien t combination to solve
this typeof problem[1{4]. More recently, thesetechniqueshavebeenextendedthrough
the useof higher-order,unconditionally stable advection schemes[5,6].

Another characteristic of 
uid 
o ws is the very wide range of spatial scalesoften
encountered: shocks in compressible
o ws, interfacesbetweenimmiscible liquids, tur-
bulenceintermittency, boundary layersand vorticit y generationnear solid boundaries
are just a few examples.Consequently, in recent yearsa number of researchers have
investigated the use of adaptive meshre�nement, where the spatial discretisation is
adjusted to follow the scaleand temporal evolution of 
o w structures [7{9].

For compressible
o ws, two main approaches have been developed: the hierarchical
structured grid approach of Berger and Oliger (Adaptiv e Mesh Re�nement, AMR)
[7] and quad/octree baseddiscretisations [8,10]. The AMR framework usesclassical
algorithms on regular Cartesian grids of di�eren t resolutionsarrangedhierarchically.
The only modi�cation necessaryis to allow coupling betweengrids at di�eren t levels
through the boundary conditions.Quad/octreediscretisations,on the other hand, deal
with various levels of re�nement locally through the useof �nite-di�erence operators
adapted to work at �ne/coarse cell boundaries.

The AMR framework hasbeenextendedto incompressible
o ws by Minion [11], Alm-
gren et al. [12] and Howell and Bell [9] but we are not aware of any quad/octree
implementation of adaptive mesh re�nement for incompressible
o ws. The natural
hierarchical nature of tree-baseddiscretisationsis well suited for multigrid implemen-
tations. Moreover, we believe that the 
exibilit y and simplicity of meshre�nement and
coarseningof quad/octreescan be a signi�cant advantage when dealingwith complex
solid boundariesor evolving interfacial 
o ws.

Complexsolid boundariesareusually represented usingboundary-following structured
curvilinear grids or unstructured grids. While boundary conditions can be easily and
accuratelyappliedon such grids, grid generationcanbe a di�cult and time consuming
process.In recent years,\Cartesian grids" [13{17] and \immersed boundary" [18{20]
techniques have known a regain of interest becausethey greatly simplify the grid
generationprocess.This 
exibilit y comesat the cost of a more complex treatment of
boundary conditions at solid boundaries.

In this light, we present a numericalmethod for solving the incompressibleEuler equa-
tions, combining a quad/octree discretisation, a projection method and a multilevel
Poissonsolver. Advection terms are discretisedusing the robust second-orderupwind
schemeof Bell, Colella and Glaz [5] and complexsolid boundariesare treated through
a Cartesian volume-of-
uid approach. On a uniform grid without solid boundaries,
the approach presented reducesto the approximate projection method described by
Martin [21,22].Solid boundariesare treated using a combination of a Poissonsolver
similar to the onestudied by Johansenand Colella [23,24]and of a cell-mergingtech-
nique for the advection scheme[14]. In contrast to classicalAMR strategies,adaptive
re�nement is performedat the fractional timestep.
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Fig. 1. Example of quadtree discretisation and corresponding tree representation.

While we restrict this description to two-dimensional
o ws for clarity, the extensionto
three dimensionsis straightforward: the sourcecode of the three-dimensionalparallel
implementation [25]canbe freely accessed,redistributed and modi�ed under the terms
of the FreeSoftware Foundation GeneralPublic License.

2 Spatial discretisation

The domain is spatially discretisedusing square(cubic in 3D) �nite volumesorgan-
ised hierarchically as a quadtree (octree in 3D) [26]. This type of discretisation has
beenusedand studied extensively for imageprocessingand computer graphicsappli-
cations [27,26]and more recently applied to the solution of the Euler equations for
compressible
o ws [8,10].An exampleof spatial discretisation and the corresponding
tree representation is given in �gure 1. In what follows we will refer to each �nite
volumeasa cell. The length of a cell edgeis denotedby h. Each cell may be the parent
of up to four children (eight in 3D). The root cell is the baseof the tree and a leaf cell
is a cell without any child. The level of a cell is de�ned by starting from zero for the
root cell and by adding one every time a group of four descendant children is added.
Each cell C hasa direct neighbour at the samelevel in each direction d (four in 2D, six
in 3D), noted Nd. Each of theseneighbours is accessedthrough a faceof the cell, noted
Cd. In order to handleembeddedsolid boundaries,we alsode�ne mixed cells which are
cut by a solid boundary.

To simplify the calculations required at the cell boundaries,we add the constraints
illustrated in �gure 2:

(a) the levels of direct neighbouring cellscannot di�er by more than one.
(b) the levels of diagonally neighbouring cellscan not di�er by more than one.
(c) All the cellsdirectly neighbouring a mixed cell must be at the samelevel.

While not fundamentally necessary, theseconstraints greatly simplify the gradient and

ux calculationspresented in this article. Constraints (a) and (b) have little impact on
the 
exibilit y of the discretisation(they only imposegradual re�nement by increments
of two). Constraint (c) is more restrictive as it forcesall the cellscut by the interface
to be at the samelevel (i.e. the whole solid boundary must be described at the same
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Fig. 2. Additional constraints on the quadtree discretisation. The re�nement necessaryto
conform to the given constraint is indicated by the dotted lines.

resolution). It is also important to note that a major restriction of the quad/octree
structure is that it imposesa locally spatially isotropic re�nement. This can be an
issuein highly non-isotropic 
o ws (i.e. boundary layers, large scaleatmospheric
o ws
etc.. . ). A limited solution is to usea rectangle instead of a squareas root cell, thus
resulting in a �xed re�nement ratio between the corresponding spatial directions. A
more general (and complicated) approach would be to use the \v ariable quadtree"
approach of Bergeret al. [28].

In practice, the choiceof a data structure to represent the tree is conditioned by the
following requirements:

(a) for any given cell, e�cien t accessto neighbouring cells.
(b) for any given cell, e�cien t accessto cell level and spatial coordinates.
(c) e�cien t traversalof:

� all leaf cells,
� all cellsat a given level,
� all mixed cells.

At present, we usethe fully-threaded tree structure presented by Khokhlov [10] which
allows (a) and (b) to be performed in O(1) operations (versusO(log N ) for a stan-
dard pointer-basedstructure). Operations (c) are performedin O(N logN ) using the
standard pointer-basedtree description (N is the number of cells traversed).Other
modern quad/octree representations might be as good or better (in particular, the
linear quadtreeencoding of Balmelli et al. [29] is noteworthy).

The primitiv e variables of the Euler equations (velocity U and pressurep) are all
de�ned at the centre of the cells.In mixed cells,the solid boundary is de�ned through
a volume-of-
uid type approach. Speci�cally, we de�ne:

� the volume fraction a as the ratio of the volume occupiedby the 
uid to the total
volume of the cell,

� the surfacefraction in direction d, sd as the ratio of the areaof faceCd occupiedby
the 
uid to the total areaof the face.

This solidboundarydescriptionassumesthat the geometriesrepresented do not possess
featureswith spatial scalessmaller than the meshsize.In particular, sharp anglesor
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thin bodiescannotbe represented correctly. This canbean issuefor someapplications,
but more importantly, asarguedby Day et al. [24], it will restrict the e�ciency of the
multigrid solver.

Computing the volume and area fractions can be expressedin terms of boolean op-
erations (intersection, union, di�erence) betweencurves (in 2D) or volumes(in 3D).
This is a di�cult problem to solve in a robust manner (due to the limited precisionof
arithmetic operationsin computers).Becauseof their numerouspractical applications,
robust geometricaloperations have attracted considerableattention from the compu-
tational geometrycommunity in recent years[30{33]. Drawing from theseresults, we
usethe booleanoperationsimplemented in the GTS Library [34]basedon an approach
similar to that presented by Aftosmis et al. [35].

3 Temp oral discretisation

Weconsidera constant density, incompressibleand inviscid 
uid. Givena velocity �eld

U (x; y; t) = (u(x; y; t); v(x; y; t)) ;

and a pressure�eld p = p(x; y; t) de�ned at location (x; y) and time t, on somedomain

 with a solid wall boundary @
, the incompressibleEuler evolution equationsfor U
are

U t = � uU x � vU y � r p;
r � U = 0:

The boundary condition for the velocity at solid wall boundariesis the no-
ow condi-
tion

U (x; y; t) � n = 0 for (x; y) 2 @
 ;

wheren is the outward unit vector on @
.

We usea classicalfractional-stepprojection method [1,2,36].At any given timestep n,
we assumethat the velocity at time n, U n and the fractional step pressurepn� 1=2 are
known at cell centres. In a �rst step, a provisional value U ?? is computedusing

U ?? � U n

� t
= � A n+1 =2; (1)

where A n+1 =2 is an approximation to the advection term [(U � r )U ]n+1 =2. The new
velocity U n+1 is then computed by applying an approximate projection operator to
U ?? which alsoyields the fractional step pressurepn+1 =2.
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4 Poisson equation

The projection method relieson the Hodgedecomposition of the velocity �eld as

U ?? = U + r �; (2)

where

r � U = 0 in 
 and U � n = 0 on @
 : (3)

Taking the divergenceof (2) yields the Poissonequation

r 2� = r � U ??; (4)

while the normal component of (3) yields the boundary condition

@�
@n

= U ?? � n on @
 :

The divergence-freevelocity �eld is then de�ned as

U = U ?? � r �;

where � is obtained as the solution of the Poissonproblem (4). This de�nes the pro-
jection of the velocity U ?? onto the spaceof divergence-freevelocity �elds.

In the context of the approximate projection method we are using here, the discrete
formulation of the projection operator will dependon wherethe velocity �eld is discre-
tised relative to the pressure�eld. Wewill useboth an exactprojection for face-centred
advection velocities and an approximate projection for the �nal projection of the cell-
centred velocities. The detail of thesetwo projections does not in
uence the general
description of the Poissonsolver.

4.1 Relaxation operator

In practice, the spatially discretised Poisson problem results in a linear system of
equationswith the pressureat cell centres as unknowns:

L (� ) = r � U ??: (5)

whereL is a discretisationof the Laplacian.This systemcanbesolvedthrough iterativ e
methods (Jacobi, Gauss{Seidel)using a relaxation operator.
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Fig. 3. Three casesfor face-centered gradient calculation. (a) Cells at the same level. (b)
Fine-coarseboundary. (c) Coarse-�ne boundary.

If we considera discretisation cell C of boundary @C, using the divergencetheorem,
the integration of (4) yields

Z

@C

r � � n =
Z

C

r � U ??; (6)

where n is the outward unit normal of @C. In the caseof a cubic discretisation cell,
the discreteequivalent of (6) can be written as

X

d

sdr d� = har � U ??; (7)

whered is the direction, sd the surfacefraction in direction d and a the 
uid volume
fraction of the cell. Johansenand Colella [23] have shown that this discretisation is
second-orderaccurate if the right-hand side is de�ned at the geometriccentre of the
partial cell and the gradient at the geometriccentre of the partial faces.Expressing
the gradient at the geometriccentre of the partial face requires interpolation of the
full-face-centered gradients. While this is relatively simpleon a regular Cartesiangrid,
this is more di�cult within the adaptive framework we are using. Consequently we
have chosento use the full-face-centered gradient even in mixed cells. The following
description thus appliesto both full and mixed cells.

To construct the relaxation operator, weassumethat the facegradient canbeexpressed
as a linear function of the pressureat the centre of the cell

r d� = � d� + � d;

wherethe � are constants and the � are linear functions of the valuesof the pressure
in the adjacent discretisation cells.

In practice,threecasesmust beconsideredfor the constructionof the gradient operator
(�gure 3). If the neighbour of the cell in direction d, N d is at the samelevel and is a
leaf cell, the gradient is simply r d� = (� d � � )=h where � d is the value of � at the
centre of Nd. Using the notation above: � d = � 1=h and � d = � d=h.
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Fig. 4. Second-orderinterpolation usedfor the gradient calculation at �ne/coarse cell bound-
aries.

Figure 4 illustrates the casewhereN d is at a lower level (case3.b). In order to maintain
the second-orderaccuracyof the gradient calculation, it is necessaryto usea three-
point interpolation procedure.The gradient r d� is computed by �tting a parabola
through points � 6, � and either � 7 or b� d. By construction, cNd is at the samelevel as
C. If cNd is a leaf cell, r d� can be expressedas

hr d� = �
�
3

�
b� d

5
+

8
15

� 6; (8)

wherethe valueof the pressureat the centre of cNd, b� d hasbeenused.If cNd is not a leaf
cell, an interpolated value for the pressure� 7 is constructed by averaging the values
of its children closestto C (indicated by � in �gure 4). The gradient is then given by

hr d� = �
2
9

� �
8
27

� 7 +
14
27

� 6: (9)

The pressure� 6 must itself be interpolated from � d and from the valuesin the neigh-
bouring cellsin directions perpendicular to d. Due to the corner re�nement constraint
(�gure 2.b), thesecells ( cN? d and N? d) are guaranteed to be at the samelevel as N d.
The values� 3 and � 4 are derived using the sameaveragingprocedureif cN? d and N? d
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are not leaf cells.This leadsto the following four cases:

� 6 =

8
>>>>>>>><

>>>>>>>>:

15
16� d � 3

32
b� ? d + 5

32� ? d if cN? d and N? d are leaf cells
5
6 � d � 1

14
b� ? d + 5

21� 3 if cN? d is a leaf cell

� d � 1
7 � 4 + 1

7 � ? d if N? d is a leaf cell
8
9 � d � 1

9 � 4 + 2
9 � 3 otherwise

(10)

The gradient r d� can still be expressedas a linear function of � . The corresponding
valuesof � d and � d can be calculatedby using (8), (9) and (10).

In the third case,Nd is at the same level but is not a leaf cell (�gure 3.c). The
gradient is simply constructedasminus the averageof the gradients constructedfrom
the children cellsof Nd closestto C (indicated by � in �gure 3.c). Thesegradients are
in turn computed using the interpolation technique described above (case3.b). This
approach ensuresthat the pressuregradient 
uxes acrosscoarse/�ne boundariesare
consistent. The extensionto three dimensionsis straightforward.

Once the � and � coe�cien ts have beencomputed for each cell face of the domain,
using (7) a relaxation operator can be de�ned as

R(�; r � U ??) : �  
har � U ?? �

P
d sd� d

P
d sd� d

: (11)

In the casewhereall the cellsare on the samelevel and there are no solid boundaries
(regular Cartesiangrid), the operator reducesto the classicalstencil

R(�; r � U ??) : �  
P

d � d � h2r � U ??

n
;

wheren is the number of directions (4 in 2D, 6 in 3D).

This operator, together with the interpolation proceduredescribed above, hasseveral
desirableproperties. It is second-orderaccuratein spaceat coarse/�ne cell boundaries
and usesa consistent 
ux estimation. In the caseof cellscut by solid boundaries,the

ux calculation is only �rst-order accuratein space,however.

4.2 Boundary conditions

Cells on the boundary of the domain or mixed cells may not have neighbours in all
directions. If valuesfor the pressure� d arerequiredin oneof thesedirections,either by
the gradient operator r d� or by the interpolation formula (10), they are set as equal
to � (the pressureat the centre of the cell considered).For cells entirely contained
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Fig. 5. Example of simple multilev el hierarchy.

within the 
uid, this is equivalent to a classicalsecond-orderaccurateimplementation
of Neumannboundary conditions for the pressure.

4.3 Multilevel acceleration

The point relaxation de�ned by R can be acceleratedusing a multigrid technique
[3,4]. When using quad/octrees,di�eren t choicesare possiblefor the construction of
the multilevel hierarchy. We have chosento de�ne a multilevel M l of depth l as the
set of cellsC which satisfy either of the conditions:

� level of C is equal to l,
� C is a leaf cell of level smaller than l.

An example of such a hierarchy is given in �gure 5. This is probably not the best
possiblehierarchy for multigrid acceleration,in the sensethat not all cellsget coarser
when moving from one level to the next. It is relatively easy to manually generate
a possibly better hierarchy such as illustrated in �gure 6. However, the systematic
generation of such optimised hierarchies involves a set of rules substantially more
complicated than the two conditions given above. In practice, if the simple rules are
used,the traversalof the cellsbelongingto M l is straightforward to implement when
using a pointer-basedquad/octree structure.

Using this multilevel hierarchy, we apply a classicalmultigrid \V-cycle" using the
correction form of the linear system(5).

L (� + � � ) = r � U ?? ( ) L(� � ) = R with R = r � U ?? � L (� ):

The residual R is �rst computedon all the cellsof the deepest level M L as

RL = r � U ?? �
1

ha

X

d

sdr d�:
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Fig. 6. Example of optimised multilev el hierarchy.

The residualis then transferedrecursively on all the coarserlevelsasa volumeweighted
average

Rl =
P

i ah2Rl+1
P

i ah2
;

where
P

i designatesthe summation over all the children of the cell considered.The
value of the pressurecorrection � � is then computed exactly on the coarsestlevel.
This value is usedas the initial guesson the next �ner level. Straight injection is used
i.e. the initial guess� � in each cell of M l is set as the value of � � in its parent cell.
The relaxation operator R is then applied a few times (using Jacobi iterations) and
the resulting solution is usedas initial guesson the next �ner level. This is repeated
recursively down to level L wherethe resulting correctionis applied to � . The wholeV-
cycle is repeateduntil the residualon the �nest level is suitably small. This algorithm
can be summarisedas:

Compute RL on M L

while kaRL k1 > �
for l = L � 1 to 0

Compute Rl using weighted averageof Rl+1

end for
Apply relaxation operator R(� �; R0) to M 0 down to convergence
for l = 1 to L

Get initial guessfor � � in cellsat level l using straight injection from level l � 1
Apply r times relaxations R(� �; Rl ) to M l

end for
Correct � on M L using � �
Compute RL on M L

end while

It is important to note that, when applied to level M l , the relaxation operator should
not useany cell of level larger than l (on which the solution for � � is not yet de�ned).
More speci�cally, when computing the gradient operator as described in the previous
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section,all the cellsat level l must be consideredasleaf cellseven if they have children
at level l + 1.

This multigrid algorithm also di�ers from a classical implementation where a pre-
relaxation is applied before transferring the residual onto the coarserlevel [3]. In a
classicalmultigrid the solution computed at each level is thus a correction to the
correction at a deeper level. Such a schemeis di�cult to implement on the multilevel
quadtree hierarchy illustrated in �gures 5 and 6 because,depending on the way the
re�ned patchesare laid out, it would require the storageof multiple correctionsfor the
cells usedas boundary conditions for re�ned patches.The schemewe proposesolves
this problem by dealing on all levels only with the correction to the pressureon the
�nest level. Of course,the convergencerate of such a \half " V-cycle is lessthan the
convergencerate of the classicalversion,but testshave shown that the increasedspeed
of such a simpli�ed V-cyclemorethan compensatefor the decreasein convergencerate.

In the following, we generallystop the V-cycle iterations when the maximum volume-
weighted residual kaRL k1 is smaller than 10� 3 and we apply r = 4 iterations of the
relaxation operator at each level.

4.4 Numerical validation

We are interested in two main properties of the multilevel Poissonsolver: the speed
of convergencefor each V-cycle iteration and the spatial order of the method as the
grid is re�ned. Given the way the relaxation operator is constructed, the method is
expected to be globally second-orderaccurate on both regular and re�ned grids. If
solid boundariesare used, the method should be �rst-order accurate near the solid
boundariesand second-orderaccurateelsewhere.

We de�ne the volume-weighted norm of a variable e as

kaekp =
P

i jei jpai h2

P
i ai h2

; (12)

where
P

i designatesthe summation over all the leaf cellsof the domain. An 1 -norm,
kaek1 , is the maximum over all the leaf cells of the absolute value of e. Knowing
two solutions de�ned on domains of maximum re�nement L 1 and L2, the rate of
convergencein a given norm p can be estimatedas

Op =
log

�
ke1kp

ke2kp

�

(L2 � L1) log2
: (13)

The convergencerate, Op = n, indicates nth -order accuracy, i.e. the leading term in
the truncation error scalesas O(hn ).
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Fig. 7. Speedof convergenceof the Poissonsolver for a simple problem, L = 7. (a) Evolution
of the residual. (b) Reduction factor.

A �rst test illustrates convergenceon a regularCartesiangrid for a smooth pressureso-
lution. We considera squaredomain of sizeunity centred on the origin, with Neumann
boundary conditions on all sides.The divergenceis set in each cell as

r � U ??(x; y) = � � 2(k2 + l2) sin(� kx) sin(� ly); (14)

with k = l = 3. The exact solution of the Poissonequation with this sourceterm is

� (x; y) = sin(� kx) sin(� ly) + �; (15)

where � is an arbitrary constant. The initial guessfor the pressureis a constant
�eld. Seven levelsof re�nement are usedwhich results in a Cartesiandiscretisation of
27 � 27 = 128� 128.We apply ten iterations of the V-cycle with r = 4 iterations of the
relaxation operator at each level. Figure 7 illustrates the evolution of the maximum
norm of the residual. A reduction factor (ratio of the residualsbefore and after the
V-cycle) of about 25 per V-cycle is obtained.

To estimate the order of the solver, we solved the same problem on regular grids
of increasingresolution. For each grid size, the norm of the error on the solution is
calculatedusing the computedsolution and the exact solution given by (15), where�
is taken as the averagevalue of the computedpressureover the entire domain. Figure
8 illustrates the evolution of the error as a function of the depth of re�nement L (i.e.
a regular Cartesian grid of size 2L � 2L ). The order of convergenceis computed as
indicated above. As expectedfor this simpleproblem, the method shows second-order
convergencein all norms.

For the moment, only the classicalstencil on regular mesheshasbeenused.In order to
test the accuracyof the gradient operator in the caseof coarse/�ne meshboundaries,
we usethe following test. A domain is �rst discretisedwith L � 2 levelsof re�nement.
Two more levels are then addedonly in the cellscontained within a circle centred on
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Fig. 8. Order of convergenceof the Poissonsolver for a simple problem. (a) Evolution of the
error and (b) order of convergenceas functions of resolution.

Fig. 9. Mesh usedfor evaluation of the coarse/�ne gradient operator, L = 6.

the origin and of radius 1=4. The resulting discretisation for L = 6 is illustrated in
�gure 9. The samesimple problem is then solved on this mesh.Figure 10 gives the
convergencerate of the residual for a meshwith L = 7. The residual reduction factor
is about 15 per V-cycle. The order of the solver for the sameproblem is illustrated in
�gure 11. Closeto second-orderconvergencein all norms is obtained which con�rms
that the gradient operator described previously is second-orderaccurateat coarse/�ne
meshboundaries.

In order to test the abilit y of the method in presenceof solid boundaries,we set up
a seriesof tests with a variety of solid geometries.The corresponding solutions of the
Poissonequationare illustrated in �gure 12. All problemsusethe sourceterm de�ned
by (14) wherex and y are the coordinatesof the geometriccentre of the cell considered
[23] . A circular solid boundary centred on the origin and of radius 1=4 is usedfor (a).
A star-shaped solid boundary de�ned in polar coordinatesas

r (� ) = 0:237+ 0:079cos(6� );
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Fig. 10. Speedof convergenceof the Poissonsolver for a simple problem discretisedusing a
meshsimilar to �gure 9 with L = 7. (a) Evolution of the residual. (b) Reduction factor.
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Fig. 11. Order of convergenceof the Poissonsolver for a simple problem discretisedusing a
meshsimilar to �gure 9. (a) Evolution of the error and (b) order of convergenceas functions
of resolution.

is usedin problem (b) and an ellipsecentred on the origin measuring3
4 � 5

8 in problem
(c). All problemsuseNeumannconditions on all boundaries. Figure 13 illustrates the
convergencespeedfor the three problemswith L = 7 levels of re�nement. The \star"
problem (b) is notably more di�cult to solve with an averagereduction factor of only
�v e per V-cycle. This is due to the limitation of the volume-of-
uid representation of
the solid boundaries.As mentioned earlier, the features of the solid boundariesare
only represented accurately if their spatial scaleis comparableto the meshsize.For
the \star" problem, while the geometry is represented correctly on the �nest level, it
is not well represented on all the coarserlevelsusedby the multigrid procedure.Cases
(a) and (b) do not have this problem becausethe smallest spatial scalesof the solid
boundaries(circle and ellipse) are comparableto the domain size.

The evolution of the error with resolutionand the associatedconvergenceorder is given
in �gure 14.As the exactsolution of the problemis not known analytically, Richardson
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Fig. 12. Contour plots of the solution of Poissonproblems with solid boundaries.
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Fig. 13. Residual reduction factor for Poissonproblems with solid boundaries,L = 7.
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Fig. 14. Evolution of the error and associated convergenceorder for Poissonproblems with
solid boundaries.

extrapolation is used.That is, the error for a given level of re�nement L is computed
by taking the solution at level L + 1 as reference.
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Fig. 15. Boundary-re�ned meshfor problem 12.b, L = 6.
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Fig. 16. Residual reduction factor for Poissonproblemswith re�ned solid boundaries,L = 7.

A combination of solid boundariesand re�nement is testedusing a discretisationwith
L � 2 levelsof re�nement on the whole domain plus two levelsaddedonly in cellscut
by the solid boundary (a discretisation exampleis given in �gure 15 for problem 12.b
and L = 6). Figures 16 and 17 illustrate the convergencespeedand the order of the
method using this discretisation.

The convergenceis close to second-order(asymptotically in L) for all norms in all
cases.The second-orderconvergenceof the maximum error kaek1 is surprising as
the discretisation of the pressuregradient 
uxes is only �rst-order accuratenear solid
boundaries(as described in section4). This �rst-order error in the pressuregradient

uxes should lead to an O(1) truncation error of the Laplacian operator. Johansen
and Colella [23] have demonstratedthat a schemewith an O(1) truncation error will
lead to an O(h) error on the solution for the pressure,in contradiction to the O(h2)
convergencewe obtain here.

To try to clarify this issuewe present truncation and solution errors for the test case
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Fig. 17. Evolution of the error and associated convergenceorder for Poissonproblems with
re�ned solid boundaries.

usedin [23,24].The embeddedboundary is de�ned by the curve,

r (� ) = 0:30+ 0:15cos6� :

The divergenceis set in each full cell as

r � U ??(r; � ) = 7r 2 cos3� :

The exactionsolution for this systemis � (r; � ) = r 4 cos3� . A meshsimilar to �gure 15
is used,with two levels of re�nement added near the embeddedboundary. In mixed
cells,in order to beableto useNeumannboundaryconditionsat the solid surfacewhile
retaining the exact solution, the 
ux of the gradient of the exact solution through the
boundary is subtracted from the divergence,giving

r � U ??(r; � ) = 7r 2 cos3� �
s(nx r x � + nyr y � )

ah
;

wheres is the length of the embeddedboundary contained within the cell, nx and ny

are the components of the outward-pointing unit normal to the solid boundary. The
gradients of the exact solution are de�ned as

r x � =
4x4 � 3x2y2 � 3y4

r
; (16)

r y � =
xy (5x2 + 9y2)

r
; (17)

where x and y are the coordinates of the center of massof the piece of embedded
boundary contained within the cell.
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Fig. 18. Evolution of the error and associated convergenceorder for the Neumann Pois-
son problem of [23,24] using locally re�ned solid boundaries. (a) Error on the solution. (b)
Volume-weighted truncation error on the Laplacian of the exact solution.

The results are summarizedin �gure 18. Figure 18.(a) givesthe error norms and cor-
responding orders of convergenceof the computed solution as functions of the level
of re�nement L. Figure 18.(b) illustrates the volume-weighted truncation error of the
numerical Laplacian L de�ned in section4.1. As expectedthe max-norm of the trun-
cation error of the numerical Laplacian is O(1) due to the O(h) error in the pressure
gradient 
uxes in mixed cells, while the ordersof the 1- and 2-norm are closeto one
and one-halfrespectively. However, while onewould expect only �rst orderconvergence
of the max-norm of the error on the solution, second-orderconvergencein all norms is
obtained as illustrated in �gure 18.(a). This con�rms the results obtained for the pre-
vious tests and implies that second-orderconvergencein all normscan be obtained for
practical problemseven if the truncation error on the Laplacian is O(1). The discrep-
ancy betweenour results and the theoretical study of Johansenand Colella could be
explainedif second-orderconverging errors in the bulk of the 
o w were always larger
than �rst-order converging errors in mixed cells for all the tests we performed. This
seemsunlikely but if this were the case,it would be necessaryto �nd more stringent
test casesthan usedin this study or in [23,24].Further work in this direction would
be useful.

Finally, �gure 19 shows how the solver scaleswith problem size. Problem 12.a was
solved on successively �ner grids and the averageresidual reduction factor was com-
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Fig. 19. Averageresidual reduction factor for problem 12.a as a function of resolution L .

puted as
 

kaR0k1

kaRnk1

! 1
n

;

whereRi is the residual after i V-cycle have beenapplied and n is the total number
of V-cycles (10 in this test). The residual reduction factor decreasesapproximately
linearly with resolution level L. The computational cost of solving a problem with
22L = N 2 degreesof freedom(in 2D) thus scalesas O(N 2 logN ) as expected from a
multigrid scheme.

5 Adv ection term

We usea conservative formulation for the evaluation of the advection term. Given a
cell C of boundary @C, using the divergencetheorem and the non-divergenceof the
velocity �eld, the �nite volume advection term A n+1 =2 of (1) can be computedas

Z

C

A n+1 =2 =
Z

C

[(U � r )U ]n+1 =2 =
Z

C

[r � (UU )]n+1 =2 =
Z

@C

U n+1 =2(U n+1 =2 � n);

wheren is the outward unit normal of @C. In the caseof our cubic discretisation cell
this can be written

ahA n+1 =2 =
X

d

sdU n+1 =2
d un+1 =2

d ; (18)

whereU n+1 =2
d is the velocity at the centre of the facein direction d at time n + 1=2 and

un+1 =2
d is the normal component of the velocity at the centre of the face in direction

d at time n + 1=2. In order to compute thesetime- and face-centred values,we usea
Godunov procedure[5] i.e. the leading terms of a Taylor seriesof the velocity of the
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form

U n+1 =2
d = U n +

h
2

@dU n +
� t
2

@tU n + O
�
h2; � t2

�
;

where @d designatesthe spatial derivative in direction d. Using the Euler equations,
the temporal derivative can be replacedby spatial derivativesyielding

U n+1 =2
d = U n +

"
h
2

�
� t
2

vn
d

#

@dU n �
� t
2

vn
? d@? dU n �

� t
2

r pn ;

where ? d is the direction perpendicular to d in 2D (in 3D the sum over the two
perpendicular directions) and vd is the velocity component in direction d at the centre
of the cell. Given a cell face,two valuesof U n+1 =2

d can be constructed,onefor each cell
sharing this face. In the original Godunov method for compressible
uids an unique
value is constructed from these two values by solving a Riemann problem. In the
incompressiblecase,simple upwinding is su�cien t [5].

Following [21,22]we usea simpli�ed upwind schemeof the form

fU n+1 =2
d (C) = U n +

h
2

min
�

1 � vn
d

� t
h

; 1
�

@dU n �
� t
2

vn
? d@? dU n (19)

where@? dU n is the upwinded derivative in direction ? d

@? dU n =

8
><

>:

r ? dU n if vn
? d < 0

r c? dU n if vn
? d > 0

(20)

r ? d is computed as in section 4.1 and d? d is the direction opposite to ? d. The cell-
centred derivative @dU n is computedby �tting a parabola through the centre of C and
of its neighbours in directions d and bd. If the neighbours are on di�eren t levels, an
interpolation or averagingproceduresimilar to that presented in section4.1 is used.In
the caseof neighbouring cellsat the samelevel, this procedurereducesto the classical
second-orderaccuratecentred di�erence scheme.We alsodo not useany slope limiters
on the derivativesas we do not expect strong discontinuities in the velocity �eld for
incompressible
o ws. Slope limiters can easily be addedin this schemeif necessary.

Given the time- and face-centred valuesfU n+1 =2
d (C) and fU n+1 =2

bd
(Nd) we then choosethe

upwind state

U n+1 =2
d (C) = U n+1 =2

bd
(Nd) =

8
>>>>><

>>>>>:

fU n+1 =2
d (C) if un

d > 0

fU n+1 =2
bd

(Nd) if un
d < 0

1
2(fU n+1 =2

d (C) + fU n+1 =2
bd

(Nd)) if un
d = 0

(21)

where Nd is the neighbour of C in direction d. If N d is at a lower level (�gure 20)
and un

d � 0, the value upwinded from Nd at the centre of the face (marked by � )
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Fig. 20. Upwinding in the caseof neighbouring cells at di�eren t levels. Linear interpolation
is usedto derive the value on the right side of Cd.

is interpolated linearly from fU n+1 =2
bd

(Nd) and from the value for its neighbour (or its

children) in the correct direction, fU n+1 =2
bd

(N? d).

In order to computethe advection term using (18), we �rst needto construct the face-
and time-centred normal velocities un+1 =2

d . If we want the method to be conservative,
these normal velocities have to be discretely divergence-free.In a �rst step, normal
velocities are constructedfor both sidesof each cell faceusing (19) and (20) wherevn

d
and vn

? d are the corresponding components of the centred velocity U n . The upwind
state u?

d is then selectedfor each faceusing (21) whereun
d is obtained by linear inter-

polation of the relevant component of the centred velocities U n (C) and U n (Nd). To
make this set of normal velocities divergence-freewe then apply a projection step by
solving

L (� ) = r � u?; (22)

wherer � u? is the �nite-v olume divergenceof the normal velocity �eld, expressedfor
each cell as

r � u? =
1

ah

X

d

sdu?
d: (23)

By correcting u? with the pressuresolution, we obtain a set of face-and time-centred
normal velocities

un+1 =2
d = u?

d � r d�: (24)
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When correcting the normal velocities, we also calculate a cell-centred value for the
pressuregradient by simple averagingof facegradients

r ?
d� =

r d� � r d̂�
2

: (25)

To compute the advection term A n+1 =2, we �rst need to re-predict the face-centred
velocities U n+1 =2

d , this time usingun+1 =2
d rather than averagesfrom cell-centred values.

Again, in a �rst step, normal velocities are constructedfor both sidesof each cell face
using (19) and (20) where we now take vn

d = (un+1 =2
d � un+1 =2

d̂
)=2. A unique value

U ?
d is then selectedfor each face using (21). A face-centred pressuregradient fr � is

then computedby linear interpolation from the averagecell-centred valuesr ?� (C) and
r ?� (Nd) (or its children). The predicted value is then obtained as

U n+1 =2
d = U ?

d � fr �:

Note that we could re-usethe face-and time-centred normal velocities un+1 =2
d as pre-

dicted values(the tangential component would still needto be recalculated),however,
we have found this approach to be unstable for 
o w around sharp angles.The spatial
�ltering of the pressuregradient provided by the averaging procedure seemsto be
necessaryto ensurestabilit y in this particular case.

5.1 Small-cell problem

To obtain the provisional cell-centred velocity �eld U ?? using (1), it is necessaryto
divide the �nite volume advection term (18) by the volume of the cell (ah2) to get
A n+1 =2. This leadsto the classicalCFL stabilit y condition

kU k� t
ah

� 1;

which expressesthe condition that a cell shouldnot \over
ow" during a giventimestep.
In the generalcase,the 
uid fraction a can be arbitrarily small with a corresponding
restrictive condition on the maximum timestep. This is traditionally referredto asthe
\small-cell problem". A number of approachesexist to work around this problem: cell
merging [37,14],redistribution [15] or special di�erence schemes[13]. We have chosen
to use a simple cell-merging technique similar to that presented by Quirk [14]. At
initialisation time, after the volume and area fractions have beencomputed,all small
cells are assigneda pointer to their biggest neighbour B (as measuredby the 
uid
fraction a). For a given timestep, the advection term ah2A n+1 =2 is then computed in
all cells as described above. To compute the advection update to the velocity, small
cells are �rst grouped with adjacent mixed or full cells using the following recursive
algorithm:
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Group (G, C)
if C doesnot already belongto any group then

Add C to G
if C is a small cell then

Group (G, B(C))
end if
for each direction d

if Nd is a small cell then
Group (G, Nd)

end if
end for

end if

whereG is the resulting group of cells.For each group, the weighted averagedupdate
is computedas

A n+1 =2
G =

P
G ah2A n+1 =2

P
G ah2

:

Each cell in the group then receivesa fraction of the update proportional to its volume

A n+1 =2 �
ah2

P
G ah2

A n+1 =2
G :

This is equivalent to usinga \virtual" cell formedby all the cellsin the group.The CFL
stabilit y now dependson the total volume of the group of cells. In practice, choosing
to de�ne small cells as cells for which a < 1=2 ensuredstabilit y in all the caseswe
tested.

6 Appro ximate pro jection

While it is easyto formulate an exact projection operator for MAC (staggered,face-
based)discretisationof the velocity �eld, it is di�cult to do the samefor a cell-centred
discretisation. This is due to the spatial decouplingof the stencilsusedfor the relax-
ation operator. This can causenumerical instabilities in the pressure�eld and makes
e�cien t implementation of multigrid techniques di�cult [38,9]. Attempts to couple
neighbouring pressurecellsthrough asymmetricoperatorshave beenunsuccessful[39].

Drawing from these conclusions,Almgren, Bell and Szymczak[12] dropped the re-
quirement of exact discretenon-divergenceof the projected cell-centred velocity �eld
and proposedto usean approximate Laplacian operator well-behaved with respect to
spatial coupling.Following Lai [38],Minion [11]and Martin [21]weusean approximate
projection basedon face-centred interpolation of the cell-centred velocity �eld. In a
�rst step, face-centred normal components of the velocity are constructedby interpo-
lation of the cell-centred provisional velocity U ??. This normal (MA C) velocity �eld is

24



then projected using the exact projection operator (following steps(22) to (24)) and
averagecell-centred pressuregradients are constructed (using (25)). These pressure
gradients are then used to correct U ?? to obtain the approximately divergence-free
velocity �eld U n+1 .

A detailed study of the stabilit y of the approximate projection canbe found in [40,41].
The use of pressure�lters was found to be necessaryin some cases(long, quasi-
stationary simulations) to avoid a gradual build-up of non-divergence-freevelocity
modes.We do not usepressure�lters in the current version of the code but did not
encounter any noticeablenumerical instabilities for the various tests we performed.

It is also important to note that even if the resulting cell-centred velocity �eld is
not exactly divergence-free,the face-centred normal advection �eld un+1 =2

d is exactly
discretely divergence-free,so that the advection schemeis exactly conservative. This
is particularly important for the treatment of variable density 
o ws.

7 Adaptiv e mesh re�nemen t

Using a tree-baseddiscretisation, it is relatively simple to implement a fully 
exible
adaptive re�nement strategy.

In a �rst step, all the leaf cells which satisfy a given criterion are re�ned (as well as
their neighbourswhennecessary, in order to respect the constraints described in �gure
2). This step could be repeated recursively but we generally assumethat the 
o w is
evolving slowly (compared to the frequencyof adaptation) so that only one passis
necessary.

In a secondstep, we considerthe parent cellsof all the leaf cells (i.e. the immediately
coarserdiscretisation). All of thesecells which do not satisfy the re�nement criterion
are coarsened(i.e. becomeleaf cells).

The valuesof the cell-centred variables for newly createdor coarsenedcells must be
initialised. For newly coarsenedcells,it is consistent to computethesevaluesasthe vol-
ume weighted averageof the valuesof their (defunct) children, so that quantities such
as momentum are preserved exactly. For newly createdcells, the solution is lessobvi-
ous. In particular, it is desirablethat momentum and vorticit y are locally preserved.
Unfortunately, this is not simpleto achieve in practice.We have chosena simple linear
interpolation procedureusing the parent cell value and its gradients. Given a newly
createdcell C with parent cell P, the new cell-centred value v(C) is obtained as

v(C) = v(P) + � x r xv(P) + � yr yv(P);

where(� x ; � y) are the coordinatesof the centre of C relative to the centre of P. This
formula guaranteeslocal conservation of momentum but tends to introducenumerical
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noisein the vorticit y �eld. A better choice may be higher-order interpolants such as
bicubic interpolation.

On the new discretisation, there is no guarantee that the velocity �eld is divergence-
freeanymore.A projection stepis then needed.To avoid the costof an extra projection
stepwhenadapting the grid, weperform the grid re�nement at the fractional timestep,
using the provisional velocity �eld U ??, just beforethe approximate projection is ap-
plied.

Variouschoicesarepossiblefor the re�nement criterion. An attractiv e option would be
to useRichardsonextrapolation to obtain a numericalapproximation of the truncation
error of the whole scheme[42,21].For the moment, we usea simple criterion basedon
the norm of the local vorticit y vector. Speci�cally, a cell is re�ned whenever

hkr � U k
maxkU k

> � ;

wheremaxkU k is evaluated over the entire domain. The threshold value � can be in-
terpreted asthe maximum acceptableangular deviation (causedby the local vorticit y)
of a particle travelling at speedmaxkU k acrossthe cell.

The computational cost of this algorithm is small comparedto the cost of the Poisson
solver. It can be applied at every timestep with a negligibleoverall penalty (lessthan
5% of the total cost).

8 Numerical results

Following Minion [11] and Almgren et al. [43], we present two convergencetests illus-
trating the second-orderaccuracyof our method for 
o ws without solid boundaries.
The �rst problem usesa squareunit domain with periodic boundary conditions in
both directions. The initial conditions are taken as

u(x; y) = 1 � 2cos(2� x) sin(2� y);
v(x; y) = 1 + 2sin(2� x) cos(2� y):

The exact solution of the Euler equationsfor theseinitial conditions is

u(x; y; t) = 1 � 2cos(2� (x � t)) sin(2� (y � t)) ;
v(x; y; t) = 1 + 2sin(2� (x � t)) cos(2� (y � t)) ;
p(x; y; t) = � cos(4� (x � t)) � cos(4� (y � t)) :

As in [43] nine runs are performed on grids with L = 5; 6 and 7 levels of re�nement
(labelled \uniform") and with one (labelled r = 1) or two (labelled r = 2) additional
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Patch L 2

L = 5 O2 L = 6 O2 L = 7

r = 1 6.80e-3 2.19 1.49e-3 2.05 3.61e-4

r = 2 4.91e-3 1.66 1.55e-3 1.81 4.39e-4

Domain L 2

L = 5 O2 L = 6 O2 L = 7

Uniform 7.70e-3 2.87 1.05e-3 2.65 1.67e-4

r = 1 9.52e-3 2.39 1.81e-3 2.17 4.01e-4

r = 2 1.22e-2 2.19 2.67e-3 2.09 6.29e-4

Patch L 1

L = 5 O1 L = 6 O1 L = 7

r = 1 1.73e-2 1.82 4.89e-3 1.91 1.30e-3

r = 2 1.58e-2 1.41 5.96e-3 1.84 1.66e-3

Domain L 1

L = 5 O1 L = 6 O1 L = 7

Uniform 1.74e-2 2.62 2.84e-3 2.68 4.44e-4

r = 1 2.27e-2 2.14 5.15e-3 1.93 1.35e-3

r = 2 2.76e-2 2.21 5.96e-3 1.84 1.66e-3
Table 1
Errors and convergenceorders in the x-component of the velocity for a simple periodic
problem.

levels added only within the squarede�ned by the points (� 0:25; � 0:25) and (0; 0).
The length of the run for each caseis 0.5, the CFL number is 0.75.For each run both
the L 2 and L1 norms of the error in the x-component of the velocity is computed
using (12) for both the whole domain (labelled \domain") and the re�ned region only
(labelled \patc h"). Table 1 givesthe errors and order of convergenceobtained.

Close to second-orderconvergenceis obtained (asymptotically in L) for the L 2 and
L1 norms on both uniform and re�ned domains.The valuesobtained are comparable
to that in [11,43].The error in the re�ned patch is comparableto the error at the
resolution of the base grid. This is expected, given the arbitrary placement of the
re�ned patch, the error is controlled mainly by the surrounding coarsecells.

The secondtest is the four-way vortex merging problem of Almgren et al. [43]. It
demonstratesthe convergenceof the method when re�nement is placedappropriately.

Four vorticesareplacedin the unit-square,centred at (0; 0), (0:09; 0), (� 0:045; 0:045
p

3)
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and (� 0:045; � 0:045
p

3) and of strengths � 150,50, 50, 50 respectively. The pro�le of
each vortex centred around (x i ; yi ) is

1 + tanh(100(0:03� r i ))
2

;

wherer i =
q

(x � x i )2 + (y � yi )2. To initialise the velocity �eld, we usethis vorticit y
as the sourceterm in the Poissonequation for the streamfunction  

r 2 = kr � U k:

Each component of the velocity �eld is then calculated from the streamfunction. No-

o w boundary conditionsare usedon the four sidesof the domain and the simulations
are ran to t = 0:25 using a CFL of 0.9.

Five di�eren t discretisationsare used,each time with up to L levels of re�nement: a
uniform grid, a grid usingstatic re�nement in concentric circlesof decreasingradiusand
the dynamicadaptivere�nement describedin section7. The \circle" grid is constructed
by starting from a uniform grid with four levels of re�nement and by successively
adding one level to all the cells contained within circles centred on the origin and of
radii:

� L = 6: 0.25,0.15
� L = 7: 0.25,0.2, 0.15
� L = 8: 0.25,0.2, 0.175,0.15
� L = 9: 0.25,0.2, 0.175,0.1625,0.15
� L = 10: 0.25,0.225,0.2, 0.175,0.1625,0.15

For the dynamically re�ned grid, the vorticit y-based criterion is applied at every
timestep with a threshold � = 4 � 10� 3. As we do not have an analytical solution
for this problem, Richardsonextrapolation is used.

Figure 21 illustrates the evolution of the vorticit y and of the adaptively re�ned grid for
L = 8. The most re�ned level closelyfollows the three outer vortices as they orbit the
central one.Far from the vortices,a very coarsemeshis used(l = 3). One may note a
fewisolatedpatchesof re�nement scatteredat the peripheryof the outer vortices.They
are due to the numerical noiseadded to the vorticit y by the interpolation procedure
necessaryto �ll in velocity values for newly created cells. As mentioned in section
7, this could be improved by using higher-order interpolants. This numerical noiseis
small enoughthat it doesnot compromisethe convergenceproperties of the adaptive
method (as shown below).

Table 2 summarisesthe results obtained for the �rst twelve calculations. For �ne
enough grids closeto second-orderconvergenceis obtained for both norms and for
the three discretisationsused. The norms of the error on the various grids are also
comparablefor a given resolution.

Table 3 gives the CPU time and the size of the problems solved for all three grids
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Domain L 2

L = 6 O2 L = 7 O2 L = 8 O2 L = 9

Uniform 2.61e-2 1.31 1.05e-2 1.97 2.68e-3 2.11 6.19e-4

Circle 2.61e-2 1.33 1.04e-2 1.96 2.68e-3 1.98 6.81e-4

Adaptiv e 2.66e-2 1.35 1.04e-2 2.07 2.47e-3 2.05 5.96e-4

Domain L 1

L = 6 O1 L = 7 O1 L = 8 O1 L = 9

Uniform 4.46e-1 1.25 1.87e-1 1.95 4.84e-2 1.85 1.34e-2

Circle 4.49e-1 1.27 1.86e-1 1.94 4.85e-2 1.87 1.33e-2

Adaptiv e 4.45e-1 1.26 1.86e-1 1.94 4.86e-2 1.83 1.37e-2
Table 2
Errors and convergenceorders in the x-component of the velocity for the four-way vortex
merging problem.

CPU Time Cells advanced

Total (s) � s/cell Number

Uniform L = 8 1486 167 8,912,896

Circle L = 8 166 222 746,368

Adaptiv e L = 8 117 286 409,632

Uniform L = 9 13,034 166 78,643,200

Circle L = 9 1024 183 5,608,960

Adaptiv e L = 9 764 326 2,342,200
Table 3
Timings for uniform, circle and adaptive grids for the four-way vortex merging problem.

and for two levels of re�nement. A PC-compatible Pentium 350 MHz machine was
used.The total number of leaf cellsadvancedfor the wholecalculation is given aswell
as the corresponding averagespeed.For L = 8, a speedupof about nine is obtained
when using the statically re�ned \circle" grid, and thirteen when using the adaptive
technique. Both the \circle" and adaptive discretisationsare notably slower (per cell)
than the uniform discretisation. This is mainly due to the interpolations necessaryto
computethe pressuregradient at coarse/�ne cell boundarieswhensolving the Poisson
equation(�gure 4). It is alsointeresting to note that the CPU times obtained are very
closeto thosereported by Almgren et al. [43] for the sameproblem (keepingin mind
that they useda Cartesian AMR technique on a DEC Alpha computer and solved a
viscous
o w).

To demonstrate the convergenceproperties of the method in the presenceof solid
boundaries,we usea test caseinitially presented by Almgren et al. [15]. A diverging
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t = 0:05

t = 0:15

t = 0:25

Fig. 21. Contour plots of vorticit y (left) and adaptive grids used (right) for the four-way
vortex merging calculation. The lines on the pictures in the right column represent the
boundariesbetweenlevels of re�nement (with a maximum of L = 8 levels).

channelis constructedin a 4� 1 domainby restricting the 
uid 
o w through the curves
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All cells Full level 5 cells

5{6 Rate 6{7 5{6 Rate 6{7

L 1 2.66e-4 1.81 7.60e-5 2.41e-4 1.85 6.69e-5

L 2 5.83e-4 1.44 2.15e-4 5.36e-4 1.49 1.91e-4

L 1 5.05e-3 0.89 2.72e-3 3.77e-3 0.93 1.98e-3
Table 4
Errors and convergencerates for the x-component of the velocity.

All cells Full level 5 cells

5{6 Rate 6{7 5{6 Rate 6{7

L 1 2.75e-4 1.95 7.11e-5 2.31e-4 2.16 5.17e-5

L 2 7.09e-4 1.32 2.84e-4 6.76e-4 1.59 2.25e-4

L 1 7.47e-3 1.05 3.60e-3 5.98e-3 1.07 2.85e-3
Table 5
Errors and convergencerates for the y-component of the velocity.

ytop and ybot , de�ned as

ybot =

8
>>>>><

>>>>>:

y1 if 0 � x � 1

y2 + 0:5(y1 � y2)(1 + cos(�2 (x � 1)) if 1 < x < 3

y2 if 3 � x � 4

and
ytop = 1 � ybot ;

with y1 = 0:2 and y2 = 10� 6. Neumannboundary conditions for the pressureare set
at the inlet (x = 0) and at the solid boundaries.A �xed unity in
o w velocity is set
at the inlet and simple out
o w boundary conditions at the outlet (the pressureand
the gradients of all the components of the velocity are set to zero at x = 4). The
simulations are ran to t = 1 using a CFL of 0.8. Three simulations are performed
on uniform grids with L = 5; 6 and 7 levels of re�nement. Table 4 and 5 show the
errors and convergencerates obtained. As in [15] we calculate errors both on the
full domain (\All cells") and on the part of the domain covered by cells at level 5
entirely contained within the 
uid (\F ull level 5 cells"). Columns labelled \5{6" give
the error computed on the mesh with 5 levels of re�nement using the mesh with 6
levels of re�nement as reference(and similarly for columnslabelled \6{7"). For both
components of the velocity closeto �rst-order convergenceis obtainedfor the L 1 norm
and closeto second-orderconvergencefor the L 1 norm, as expected from a solution
globally second-orderaccurate but �rst-order accurate at the boundaries.Figure 22
con�rms that the error is concentrated near solid boundaries.The maximum error in
either component is small (lessthan onepercent of the magnitude of the velocity).

Finally, we present an application of the three-dimensionalversion of the code to a
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Fig. 22. Contour plot of the error on the x-component of the velocity estimated for a solution
with L = 6 levels of re�nement.

practical engineering-type problem.The air 
o w around the vesselRV Tangaroaof the
National Institute of Water and AtmosphericResearch hasbeensimulated by solving
the 3D time-dependent incompressibleEuler equationsaround a CAD model. Figure
23 is a snapshotin time of the developed turbulent 
o w. Wind is coming at a right
angle from the right of the vessel.The stream ribbons and cross-sectionat sealevel
are colouredaccordingto the norm of the velocity. The spatial resolution is about 50
centimetres near the ship and is adapted dynamically (using the vorticit y criterion)
down to a minimum scaleof one meter elsewherein the 
o w. The resulting mesh is
composedof about 350,000leaf cells in establishedregime.Figure 24 shows a vertical
and horizontal cross-sectionthrough the adapted octree meshfor the sametimestep.
We are in the processof comparingtheseresults to experimental measurements, which
will be the subject of a future publication.

9 Conclusion

The combination of a quad/octree discretisation, an approximate projection method,
a multigrid Poissonsolver and a volume-of-
uid embeddeddescription of solid bound-
aries proves to be a feasibleand e�cien t technique for the numerical solution of the
time-dependent incompressibleEuler equations.This approach di�ers from the clas-
sical Cartesian AMR technique [7,12,9]by treating the connectionbetween levels of
re�nement at the cell operator level rather than through boundary conditionsbetween
re�ned patches.Theseoperatorscanbe designedto be spatially second-orderaccurate
and to useconsistent (conservative) 
ux estimations at coarse/�ne boundaries.This
�ne-grained description allows almost full 
exibilit y in the placement and shape of
re�ned regions.Moreover, the re�nement and coarseningprocessis naturally imple-
mented by the quad/octreestructure and doesnot needspecialisedalgorithms for grid
generation[44]. The meshadaptation can thus be performedfor every timestep with
minimum overhead.

The price to pay for this 
exibilit y is the lossof the array-based,cache- and access-
e�cien t structured grids which areat the coreof the CartesianAMR technique.While
more thorough investigation would be necessary, we show that similar performances
to AMR can be achieved using our quad/octree approach. Moreover, we believe that
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in the caseof small and complicated structures (such as interfacesbetween
uids or
shocks) the 
exibilit y of this approach can more than compensatefor this overhead
(giventhat a CartesianAMR techniquewould requirea largenumber of re�ned patches
to cover the small structures, leading to substantial overheadsin boundary conditions
and most probably to the lossof cache-e�ciency).

Future developments include extensionto the incompressiblevariable-density Navier{
Stokes equations and interfacial 
o ws, using VOF [45] and marker techniques [46].
Using sub-cyclingin time on di�eren t levels of re�nement [43] would also be a useful
extensionof the algorithm presented.

Finally, by providing an open sourceversion of the code which can be freely redis-
tributed and modi�ed [25], we hope to encourageresearch and collaboration in this
�eld.
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Fig. 23. Air
o w around RV Tangaroa.The stream ribb ons and cross-sectionat sealevel are
coloured according to the norm of the velocity.

Fig. 24. Adaptiv e mesh. The horizontal and vertical cross-sections illustrate the
three-dimensionaladaptive octree.
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