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Abstract

An adaptive meshprojection method for the time-dependert incompressibleEuler
equationsis preseried. The domain is spatially discretised using quad/octreesand
a multilev el Poissonsolver is usedto obtain the pressure.Complex solid boundaries
arerepresened using a volume-of- uid approad. Second-orderconvergencen space
and time is demonstrated on regular, statically and dynamically re ned grids. The
quad/octree discretisation provesto bevery exible and allowsaccurateand e cien t
tracking of ow features. The sourcecode of the method implementation is freely
available.
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1 Intro duction

E cien t techniquesfor the numerical simulation of low Mach number o wshavealarge
range of applications: from fundamenal uid medanicsstudiessud asturbulence or
interfacial ows,to engineeringand ervironmental problems.For time-dependert o ws,
the nite speedof propagation of sound wavescan lead to strong restrictions on the
maximum value of the timestep. While ltering techniquescan be applied to try to
lift this constrairt, a better approad is to assumethat the uid consideredis strictly
incompressible.This introducesan elliptic problem for the pressurewhich expresses
the instantaneouspropagation of pressureinformation throughout the ertire domain.
In practice, this leadsto the fundamertal changefrom a spatially explicit to a spatially
implicit problem.
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Projection methods and multigrid solvershave provedan e cien t conbination to solve
this type of problem[1{4]. More recerily, thesetechniqueshave beenextendedthrough
the useof higher-order,unconditionally stable advection schemes|[5,6].

Another characteristic of uid ows is the very wide range of spatial scalesoften
encourtered: shacks in compressible o ws, interfacesbetweenimmiscible liquids, tur-
bulenceintermittency, boundary layers and vorticity generationnear solid boundaries
are just a few examples.Consequetly, in recert yearsa number of researbers have
investigated the use of adaptive meshre nement, where the spatial discretisation is
adjustedto follow the scaleand temporal ewlution of ow structures [7{9].

For compressible o ws, two main approades have been deweloped: the hierarchical
structured grid approad of Berger and Oliger (Adaptive Mesh Re nement, AMR)

[7] and quad/octree baseddiscretisations[8,10]. The AMR framework usesclassical
algorithms on regular Cartesian grids of di erent resolutionsarranged hierarcically.

The only modi cation necessaryis to allow coupling betweengrids at di erent levels
through the boundary conditions. Quad/octree discretisations,on the other hand, deal
with various levels of re nement locally through the useof nite-di erence operators
adaptedto work at ne/coarse cell boundaries.

The AMR framework hasbeenextendedto incompressibleo ws by Minion [11], Alm-
gren et al. [12] and Howell and Bell [9] but we are not aware of any quad/octree
implemertation of adaptive mesh re nement for incompressible ows. The natural
hierarchical nature of tree-baseddiscretisationsis well suited for multigrid implemen-
tations. Moreover, we believe that the exibilit y and simplicity of meshre nement and
coarseningof quad/octreescan be a signi cant advantage when dealingwith complex
solid boundariesor ewlving interfacial ows.

Complexsolid boundariesare usually represeted using boundary-following structured
curvilinear grids or unstructured grids. While boundary conditions can be easily and
accuratelyapplied on sud grids, grid generationcanbe a di cult andtime consuming
process.In recen years,\Cartesian grids" [13{17] and \immersed boundary" [18{20]
techniques have known a regain of interest becausethey greatly simplify the grid
generationprocess.This exibilit y comesat the cost of a more complextreatment of
boundary conditions at solid boundaries.

In this light, we presert a numerical method for solving the incompressibleEuler equa-
tions, combining a quad/octree discretisation, a projection method and a multilevel
Poissonsolwver. Advection terms are discretisedusing the robust second-ordemupwind
scdhemeof Bell, Colellaand Glaz [5] and complexsolid boundariesare treated through
a Cartesian volume-of- uid approad. On a uniform grid without solid boundaries,
the approad preserted reducesto the appraoximate projection method described by
Martin [21,22].Solid boundariesare treated using a conbination of a Poissonsolver
similar to the one studied by Johansenand Colella [23,24]and of a cell-mergingtech-
nique for the advection sthheme[14]. In cortrast to classicalAMR strategies,adaptive
re nement is performedat the fractional timestep.



Fig. 1. Example of quadtree discretisation and corresponding tree represertation.

While we restrict this descriptionto two-dimensional o ws for clarity, the extensionto
three dimensionsis straightforward: the sourcecode of the three-dimensionalparallel
implemertation [25]canbe freely accessediedistributed and modi ed under the terms
of the Free Software Foundation General Public License.

2 Spatial discretisation

The domain is spatially discretisedusing square(cubic in 3D) nite volumesorgan-
ised hierardhically as a quadtree (octree in 3D) [26]. This type of discretisation has
beenusedand studied extensiwely for image processingand computer graphicsappli-
cations [27,26]and more recerly applied to the solution of the Euler equationsfor
compressibleo ws [8,10]. An exampleof spatial discretisation and the correspnding
tree represemation is given in gure 1. In what follows we will refer to ead nite

volumeasa cell. The length of a cell edgeis denotedby h. Ead cell may be the parent
of up to four children (eight in 3D). The root cell is the baseof the tree and a leaf cell
is a cell without any child. The levelof a cell is de ned by starting from zerofor the
root cell and by adding one every time a group of four descendan children is added.
Eadh cell C hasa direct neighlour at the samelevel in ead direction d (four in 2D, six
in 3D), noted N 4. Each of theseneighboursis accessedhrough a faceof the cell, noted
G- In order to handle embeddedsolid boundaries,we alsode ne mixed cells which are
cut by a solid boundary:

To simplify the calculations required at the cell boundaries,we add the constrairts
illustrated in gure 2:

(a) the levels of direct neighbouring cellscannot di er by more than one.
(b) the levels of diagonally neighbouring cellscan not di er by more than one.
(c) All the cellsdirectly neighbouring a mixed cell must be at the samelevel.

While not fundamertally necessarytheseconstraints greatly simplify the gradiert and
ux calculationspreserted in this article. Constraints (a) and (b) have little impact on
the exibilit y of the discretisation (they only imposegradual re nement by incremerts
of two). Constraint (c) is morerestrictive asit forcesall the cellscut by the interface
to be at the samelevel (i.e. the whole solid boundary must be described at the same
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Fig. 2. Additional constraints on the quadtree discretisation. The re nement necessaryto
conform to the given constraint is indicated by the dotted lines.

resolution). It is alsoimportant to note that a major restriction of the quad/octree
structure is that it imposesa locally spatially isotropic re nement. This can be an
issuein highly non-isotropic ows (i.e. boundary layers, large scaleatmospheric o ws
etc...). A limited solution is to usea rectangleinstead of a squareas root cell, thus
resulting in a xed re nement ratio betweenthe correspnding spatial directions. A
more general (and complicated) approad would be to use the \variable quadtree™
approad of Bergeret al. [28].

In practice, the choice of a data structure to represem the tree is conditioned by the
following requiremerts:

(a) for any givencell, e cien t accesgo neighbouring cells.
(b) for any givencell, e cient accesdo cell level and spatial coordinates.
(c) ecient traversalof:

all leaf cells,

all cellsat a given level,

all mixed cells.

At presern, we usethe fully-threaded tree structure preserted by Khokhlov [10] which
allows (a) and (b) to be performedin O(1) operations (versusO(logN) for a stan-
dard pointer-basedstructure). Operations (c) are performedin O(N logN) usingthe
standard pointer-basedtree description (N is the number of cells traversed). Other
modern quad/octree represemations might be as good or better (in particular, the
linear quadtree encaling of Balmelli et al. [29] is noteworthy).

The primitiv e variables of the Euler equations (velocity U and pressurep) are all
de ned at the certre of the cells.In mixed cells,the solid boundary is de ned through
a volume-of- uid type approad. Speci cally, we de ne:

the volume fraction a asthe ratio of the volume occupiedby the uid to the total
volume of the cell,

the surfacefraction in direction d, sq asthe ratio of the areaof faceCy4 occupiedby
the uid to the total areaof the face.

This solid boundary descriptionassumeshat the geometriesepreseted do not possess
featureswith spatial scalessmaller than the meshsize.In particular, sharp anglesor



thin bodiescannotbe represered correctly. This canbe an issuefor someapplications,
but moreimportantly, asarguedby Day et al. [24], it will restrict the e ciency of the
multigrid solwer.

Computing the volume and area fractions can be expressedn terms of boolean op-
erations (intersection, union, di erence) betweencurves (in 2D) or volumes(in 3D).
This isadicult problemto solve in a robust manner (due to the limited precisionof
arithmetic operationsin computers).Becauseof their numerouspractical applications,
robust geometricaloperations have attracted considerableattention from the compu-
tational geometrycommunity in recen years[30{33]. Drawing from theseresults, we
usethe booleanoperationsimplemerted in the GTS Library [34] basedon an approad
similar to that preserted by Aftosmis et al. [35].

3 Temporal discretisation

We considera constart density, incompressibleand inviscid uid. Givena velocity eld

Uy t) = (ux;y:t);v(x y; ),

and a pressureeld p= p(x;y;t) de ned at location (x; y) and time t, on somedomain
with a solid wall boundary @, the incompressibleEuler ewlution equationsfor U
are

The boundary condition for the velocity at solid wall boundariesis the no- ow condi-
tion
U(x;y;t) n=0 for (x;y)2 @;

wheren is the outward unit vector on @.

We usea classicalfractional-step projection method [1,2,36].At any giventimestepn,
we assumethat the velocity at time n, U" and the fractional step pressurep” 2 are
known at cell certres. In a rst step, a provisional value U *? is computed using

U?’? Un

= AT (1)

where A"*1=2 is an appraximation to the advection term [(U r )U]"*1=2. The new
velocity U"*! is then computed by applying an approximate projection operator to
U ?? which alsoyields the fractional step pressurep™**=2.



4 Poisson equation

The projection method relieson the Hodge decompsition of the velocity eld as

U?=U+r ; (2)
where
r U=0in and U n=0o0n@: (3)

Taking the divergenceof (2) yields the Poissonequation

r2 =r uU?% (4)

while the normal componert of (3) yields the boundary condition

@:U” non @:

@

The divergence-freeselocity eld is then de ned as
u=u?? r;

where is obtained as the solution of the Poissonproblem (4). This de nes the pro-
jection of the velocity U?? onto the spaceof divergence-freevelocity elds.

In the cortext of the approximate projection method we are using here, the discrete
formulation of the projection operator will depend on wherethe velocity eld is discre-
tisedrelativeto the pressureeld. Wewill useboth an exactprojection for face-cetred
advection velocities and an approximate projection for the nal projection of the cell-
certred velocities. The detail of thesetwo projections does not in uence the general
description of the Poissonsoler.

4.1 Relaxation operator

In practice, the spatially discretised Poisson problem results in a linear system of
equationswith the pressureat cell certres as unknowns:

L()=r U™ (5)

whereL is adiscretisationof the Laplacian. This systemcanbe solvedthrough iterative
methods (Jacobi, Gauss{Seidel)using a relaxation operator.
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Fig. 3. Three casesfor face-cettered gradient calculation. (a) Cells at the samelevel. (b)
Fine-coarseboundary. (c) Coarse- ne boundary.

If we considera discretisation cell C of boundary @C, using the divergencetheorem,
the integration of (4) yields

y y
r n= r U (6)
a c

wheren is the outward unit normal of @C. In the caseof a cubic discretisation cell,
the discreteequivalert of (6) can be written as
X
Sqgf ¢ = har U™ (7
d

whered is the direction, sy the surfacefraction in direction d and a the uid volume
fraction of the cell. Johansenand Colella [23] have shown that this discretisation is
second-orderaccurateif the right-hand sideis de ned at the geometriccertre of the
partial cell and the gradiert at the geometriccerire of the partial faces.Expressing
the gradiert at the geometriccertre of the partial face requiresinterpolation of the
full-face-cenered gradierts. While this is relatively simple on a regular Cartesiangrid,
this is more di cult within the adaptive framework we are using. Consequetly we
have chosento usethe full-face-certered gradiert even in mixed cells. The following
description thus appliesto both full and mixed cells.

To constructthe relaxation operator, we assumehat the facegradiert canbe expressed
asa linear function of the pressureat the certre of the cell

g = a9 + o

wherethe are constarts and the are linear functions of the valuesof the pressure
in the adjacert discretisation cells.

In practice, three casesnust be consideredor the construction of the gradiert operator
(gure 3). If the neighbour of the cell in direction d, N4 is at the samelevel and is a
leaf cell, the gradiert issimplyr ¢4 = ( 4 )=h where 4 is the value of at the
certre of Ngy. Using the notation above: 4= 1=hand 4= 4=h
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Fig. 4. Second-orderinterpolation usedfor the gradient calculation at ne/coarse cell bound-
aries.

Figure 4 illustrates the casewhereNy is at a lower level (case3.b). In orderto maintain
the second-orderaccuracy of the gradiert calculation, it is necessaryto usea three-
point interpolation procedure.The gradiert r 4 is computed by tting a parabola
through points 4, and either ; or b, By construction, K4 is at the samelevel as
C If Ryisaleafcell,r 4 canbe expresseds

b 8

d
h _ L 8
fd 3 5 156’ ()

wherethe value of the pressureat the certre of N, b, hasbeenused.If K is not a leaf
cell, an interpolated value for the pressure ; is constructed by averagingthe values
of its children closestto C (indicated by in gure 4). The gradiert is then given by

2 8 14
= = — o+ =
hr 4 9 277 27°% ©)

The pressure ¢ must itself be interpolated from 4 and from the valuesin the neigh-
bouring cellsin directions perpendicularto d. Due to the corner re nement constrain
(gure 2.b), thesecells(K->4 and N 4) are guararteed to be at the samelevel as Ny.
The values ; and 4 are derived using the sameaveragingprocedureif K> 4 and N, 4



are not leaf cells. This leadsto the following four cases:

% By bg+ = o4 if Rog and N, g are leaf cells
d 5Pa+ 2 3 if Roqisaleafcell (10
% 1 % 24 if N, is a leaf cell
s d + 23 otherwise

The gradient r 4 canstill be expressedas a linear function of . The correspnding
valuesof 4 and 4 canbe calculatedby using(8), (9) and (10).

In the third case,Ngy is at the samelevel but is not a leaf cell (gure 3.c). The
gradiert is simply constructedas minus the averageof the gradierts constructedfrom
the children cellsof N4 closestto C (indicated by in gure 3.c). Thesegradierts are
in turn computed using the interpolation technique described above (case3.b). This
approad ensuresthat the pressuregradiert uxes acrosscoarse/ ne boundariesare
consisten. The extensionto three dimensionsis straightforward.

Oncethe and coe cients have beencomputed for ead cell face of the domain,
using (7) a relaxation operator can be de ned as

P
h ?7?
R(;r U™: ar dSd d. (11)
dSd d

In the casewhereall the cellsare on the samelevel and there are no solid boundaries
(regular Cartesiangrid), the operator reducesto the classicalstencil

P
h2r ??
R(:r U™): d d - v ;

wheren is the number of directions (4 in 2D, 6 in 3D).

This operator, together with the interpolation proceduredescriked above, has se\eral
desirableproperties. It is second-ordemccuratein spaceat coarse/ ne cell boundaries
and usesa consisteh ux estimation. In the caseof cells cut by solid boundaries,the
ux calculationis only rst-order accuratein space,however.

4.2 Boundary conditions

Cells on the boundary of the domain or mixed cells may not have neighbours in all
directions. If valuesfor the pressure 4 arerequiredin oneof thesedirections, either by
the gradiert operator r 4 or by the interpolation formula (10), they are set as equal
to (the pressureat the certre of the cell considered).For cells entirely cortained
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Fig. 5. Example of simple multilev el hierarchy.

within the uid, this is equivalernt to a classicalsecond-ordeaccurateimplemertation
of Neumannboundary conditions for the pressure.

4.3 Multilevel acceleration

The point relaxation de ned by R can be acceleratedusing a multigrid technique
[3,4]. When using quad/octrees, di erent choicesare possiblefor the construction of
the multilevel hierarchy. We have chosento de ne a multilevel M | of depth | asthe
set of cells C which satisfy either of the conditions:

level of Cis equalto |,
Cis a leaf cell of level smallerthan |I.

An example of sudh a hierarchy is given in gure 5. This is probably not the best
possiblehierarchy for multigrid acceleration,in the sensethat not all cellsget coarser
when moving from one level to the next. It is relatively easyto manually generate
a possibly better hierarchy sud as illustrated in gure 6. Howewer, the systematic
generation of such optimised hierarchies involves a set of rules substartially more
complicated than the two conditions given above. In practice, if the simple rules are
used,the traversal of the cellsbelongingto M | is straightforward to implemert when
using a pointer-basedquad/octree structure.

Using this multilevel hierarchy, we apply a classical multigrid \V-cycle" using the
correction form of the linear system(5).

LC+ )=r U () L( )=R with R=r U?” L():

The residualR is rst computedon all the cellsof the deepestlevel M | as

1 X
Ri=r U” = s4ryq:
ha
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Fig. 6. Example of optimised multilev el hierarchy.

The residualis then transferedrecursiwely on all the coarserevelsasa volumeweighed

average P

R _ i ah2R|+1 .
| =

jahz '

wherep i designatesthe summation over all the children of the cell considered.The
value of the pressurecorrection is then computed exactly on the coarsestlevel.
This valueis usedasthe initial guesson the next ner level. Straight injection is used
l.e. the initial guess in ead cell of M | is setasthe value of in its parent cell.
The relaxation operator R is then applied a few times (using Jacobi iterations) and
the resulting solution is usedas initial guesson the next ner level. This is repeated
recursively down to level L wherethe resulting correctionis appliedto . The wholeV-
cycleis repeateduntil the residualon the nest level is suitably small. This algorithm
can be summarisedas:

ComputeR. on M |
while kaRLkl >
forI=L 1to O
Compute R; using weighted averageof R|.1
end for
Apply relaxation operator R( ; Rp) to M o down to corvergence
for I=1to L
Get initial guessfor  in cellsat level | using straight injection from level | 1
Apply r times relaxationsR( ; R)) to M,
end for
Correct onM | using
Compute R, on M
end while

It isimportant to note that, whenappliedto level M |, the relaxation operator should
not useany cell of level larger than | (on which the solution for s not yet de ned).
More speci cally, when computing the gradiert operator as descrited in the previous

11



section,all the cellsat level | must be consideredasleafcellsevenif they have children
at level | + 1.

This multigrid algorithm also di ers from a classicalimplemertation where a pre-
relaxation is applied before transferring the residual onto the coarserlevel [3]. In a
classical multigrid the solution computed at ead level is thus a correction to the
correction at a deeer level. Sud a schemeis di cult to implemert on the multilevel
guadtree hierardy illustrated in gures 5 and 6 becausedepending on the way the
re ned patchesarelaid out, it would require the storageof multiple correctionsfor the
cells usedas boundary conditions for re ned patches. The schemewe proposesolves
this problem by dealing on all levels only with the correction to the pressureon the
nest level. Of course,the corvergencerate of such a \half " V-cycle is lessthan the
convergencerate of the classicalversion,but tests have shown that the increasedspeed
of sud asimpli ed V-cycle morethan compensatefor the decreasen corvergenceate.

In the following, we generally stop the V-cycle iterations whenthe maximum volume-
weighted residual kaR_k; is smallerthan 10 * and we apply r = 4 iterations of the
relaxation operator at ead level.

4.4 Numerical validation

We are interestedin two main properties of the multilevel Poissonsoler: the speed
of corvergencefor eat V-cycle iteration and the spatial order of the method as the
grid is re ned. Given the way the relaxation operator is constructed, the method is
expected to be globally second-orderaccurate on both regular and re ned grids. If
solid boundariesare used, the method should be rst-order accurate near the solid
boundariesand second-orderaccurateelsewhere.

We de ne the volume-weighted norm of a variable e as

P
ieiPa h?
ad, = —HTRT (12)
|

Wherep i designateshe summation over all the leaf cellsof the domain. An 1 -norm,
kaek, , is the maximum over all the leaf cells of the absolute value of e. Knowing
two solutions de ned on domains of maximum re nement L; and L,, the rate of
corvergencein a given norm p can be estimated as

log (ke
O, = e __; 13
P (Lz Ll) |Og2 ( )

The corvergencerate, O, = n, indicates n"-order accuracy i.e. the leading term in
the truncation error scalesas O(h").

12
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Fig. 7. Speedof convergenceof the Poissonsolver for a simple problem, L = 7. (a) Evolution
of the residual. (b) Reduction factor.

A rst testillustrates corvergenceon a regular Cartesiangrid for a smooth pressureso-
lution. We considera squaredomain of sizeunity certred on the origin, with Neumann
boundary conditions on all sides.The divergences setin ead cell as

r U?(x;y) = ?(k*+ 1%)sin( kx)sin( ly); (14)
with k = | = 3. The exact solution of the Poissonequation with this sourceterm is
(x;y) = sin( kx) sin( ly) + ; (15)

where is an arbitrary constart. The initial guessfor the pressureis a constan
eld. Sewen levelsof re nement are usedwhich resultsin a Cartesiandiscretisation of
27 27=128 128.We apply ten iterations of the V-cycle with r = 4 iterations of the
relaxation operator at ead level. Figure 7 illustrates the ewlution of the maximum
norm of the residual. A reduction factor (ratio of the residualsbefore and after the
V-cycle) of about 25 per V-cycle is obtained.

To estimate the order of the solver, we solved the same problem on regular grids

of increasingresolution. For ead grid size,the norm of the error on the solution is

calculated using the computed solution and the exact solution given by (15), where

is taken asthe averagevalue of the computed pressureover the entire domain. Figure

8 illustrates the ewlution of the error as a function of the depth of re nement L (i.e.

a regular Cartesian grid of size2- 2Y). The order of corvergenceis computed as
indicated above. As expectedfor this simple problem, the method shows second-order
convergencein all norms.

For the momernt, only the classicalstencil on regular mesheshasbeenused.In order to
test the accuracyof the gradiert operator in the caseof coarse/ ne meshboundaries,
we usethe following test. A domainis rst discretisedwith L 2 levels of re nement.
Two more levels are then addedonly in the cells contained within a circle certred on

13
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error and (b) order of convergenceas functions of resolution.

Fig. 9. Mesh usedfor evaluation of the coarse/ ne gradient operator, L = 6.

the origin and of radius 1=4. The resulting discretisation for L = 6 is illustrated in
gure 9. The samesimple problem is then solved on this mesh. Figure 10 givesthe
convergencerate of the residual for a meshwith L = 7. The residual reduction factor
is about 15 per V-cycle. The order of the solver for the sameproblem s illustrated in
gure 11. Closeto second-ordercorvergencein all norms is obtained which con rms
that the gradiernt operator descriked previously is second-orderlccurateat coarse/ ne
meshboundaries.

In order to test the ability of the method in presenceof solid boundaries,we set up
a seriesof tests with a variety of solid geometries.The correspnding solutions of the
Poissonequation are illustrated in gure 12.All problemsusethe sourceterm de ned
by (14) wherex andy arethe coordinatesof the geometriccertre of the cell considered
[23]. A circular solid boundary certred on the origin and of radius 1=4 is usedfor (a).
A star-shaped solid boundary de ned in polar coordinates as

r( ) = 0:237+ 0:079coq6 );

14
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Fig. 11. Order of convergenceof the Poissonsolver for a simple problem discretised using a
meshsimilar to gure 9. (a) Evolution of the error and (b) order of corvergenceas functions
of resolution.

is usedin problem (b) and an ellipsecertred on the origin measuring?1 g in problem
(c). All problemsuseNeumannconditions on all boundaries. Figure 13 illustrates the
convergencespeedfor the three problemswith L = 7 levels of re nement. The \star"
problem (b) is notably moredi cult to solve with an averagereduction factor of only
v e per V-cycle. This is due to the limitation of the volume-of- uid represemation of
the solid boundaries. As mertioned earlier, the featuresof the solid boundariesare
only represeted accurately if their spatial scaleis comparableto the meshsize. For
the \star" problem, while the geometryis represered correctly on the nest level, it
is not well represeted on all the coarserlevelsusedby the multigrid procedure.Cases
(a) and (b) do not have this problem becausethe smallestspatial scalesof the solid
boundaries(circle and ellipse) are comparableto the domain size.

The ewlution of the error with resolutionand the assaiated convergenceorderis given
in gure 14.As the exactsolution of the problemis not known analytically, Richardson

15
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Fig. 12. Contour plots of the solution of Poissonproblems with solid boundaries.
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Fig. 13. Residual reduction factor for Poissonproblems with solid boundaries,L = 7.
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extrapolation is used.That is, the error for a given level of re nement L is computed
by taking the solution at level L + 1 asreference.
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Fig. 15. Boundary-re ned meshfor problem 12.b,L = 6.
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Fig. 16. Residualreduction factor for Poissonproblemswith re ned solid boundaries,L = 7.
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A combination of solid boundariesand re nement is tested using a discretisation with
L 2levelsof re nement on the whole domain plus two levelsaddedonly in cellscut
by the solid boundary (a discretisation exampleis givenin gure 15 for problem 12.b
and L = 6). Figures 16 and 17 illustrate the corvergencespeedand the order of the
method using this discretisation.

The corvergenceis closeto second-order(asymptotically in L) for all norms in all

cases.The second-ordercorvergenceof the maximum error kaek; is surprising as
the discretisation of the pressuregradiert uxes is only rst-order accuratenear solid
boundaries(as descriked in section4). This rst-order error in the pressuregradiert

uxes should lead to an O(1) truncation error of the Laplacian operator. Johansen
and Colella [23] have demonstratedthat a shemewith an O(1) truncation error will

lead to an O(h) error on the solution for the pressure,in cortradiction to the O(h?)

convergencewe obtain here.

To try to clarify this issuewe preser truncation and solution errors for the test case
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Fig. 17. Evolution of the error and assaiated convergenceorder for Poissonproblems with
re ned solid boundaries.
usedin [23,24].The embeddedboundary is de ned by the curve,

r( )= 0:30+ 0:15cos6 :
The divergenceis setin ead full cell as
r U?(r; )= 7r?cos3:

The exaction solution for this systemis (r; ) = r%cos3 . A meshsimilar to gure 15
Is used, with two levels of re nement added near the enbeddedboundary. In mixed
cells,in orderto be ableto useNeumannboundary conditionsat the solid surfacewhile
retaining the exact solution, the ux of the gradiert of the exact solution through the
boundary is subtracted from the divergence giving

S(nNxr x + Nyry ).
ah ’
wheres is the length of the embeddedboundary cortained within the cell, n, and ny

are the componerts of the outward-pointing unit normal to the solid boundary. The
gradierts of the exact solution are de ned as

r U?(r; )= 7r’cos3

4 2\,2 4
ax* 33Xy 3y; (16)

r
il (5er+ ). (17)

My

where x and y are the coordinates of the certer of massof the piece of enbedded
boundary cortained within the cell.
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Fig. 18. Evolution of the error and assaiated convergenceorder for the Neumann Pois-
son problem of [23,24]using locally re ned solid boundaries. (a) Error on the solution. (b)
Volume-weighted truncation error on the Laplacian of the exact solution.

The results are summarizedin gure 18. Figure 18.(a) givesthe error norms and cor-

responding orders of corvergenceof the computed solution as functions of the level

of re nement L. Figure 18.(b) illustrates the volume-weighted truncation error of the

numerical Laplacian L de ned in section4.1. As expectedthe max-norm of the trun-

cation error of the numerical Laplacianis O(1) due to the O(h) error in the pressure
gradiert uxes in mixed cells, while the orders of the 1- and 2-norm are closeto one
and one-halfrespectively. However, while onewould expectonly rst ordercornvergence
of the max-norm of the error on the solution, second-ordeicorvergencen all normsis

obtained asillustrated in gure 18.(a). This con rms the results obtained for the pre-

vious tests and implies that second-orderconvergencen all normscan be obtained for

practical problemsewen if the truncation error on the Laplacianis O(1). The discrep-
ancy betweenour results and the theoretical study of Johansenand Colella could be
explainedif second-ordercorverging errorsin the bulk of the ow were always larger
than rst-order converging errors in mixed cells for all the tests we performed. This

seemsunlikely but if this werethe case,it would be necessaryto nd more stringent

test casesthan usedin this study or in [23,24].Further work in this direction would

be useful.

Finally, gure 19 shawvs how the solver scaleswith problem size. Problem 12.a was
solved on successigly ner grids and the averageresidual reduction factor was com-
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Fig. 19. Averageresidual reduction factor for problem 12.aas a function of resolution L.

puted as '

kaRok; ™

kaRnkl ’
where R; is the residual after i V-cycle have beenapplied and n is the total number
of V-cycles (10 in this test). The residual reduction factor decreasesappraximately
linearly with resolution level L. The computational cost of solving a problem with
2?2t = N? degreesof freedom(in 2D) thus scalesas O(N2logN) as expected from a
multigrid scheme.

5 Adv ection term

We use a consenative formulation for the evaluation of the advection term. Given a
cell C of boundary @, using the divergencetheorem and the non-divergenceof the
velocity eld, the nite volume advection term A"*1=2 of (1) can be computedas
Z z z z
An+l=2 — [(U r )U]n+1=2 — [r (UU )]n+l=2 — Un+1=2(U n+l=2 n).
C C C @

wheren is the outward unit normal of @. In the caseof our cubic discretisation cell
this can be written

X - -
ahA"=2 = = sup™t Uyt (18)
d
whereU!"™* 7 is the velccity at the certre of the facein direction d at time n+ 1=2 and

ug+1=2 is the normal componert of the velocity at the certre of the facein direction

d at time n + 1=2. In order to compute thesetime- and face-cetred values,we usea
Godunov procedure[5] i.e. the leading terms of a Taylor seriesof the velocity of the
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form h )

Ug'®=u"+ S@U"+ @+ 0 b
where @ designatesthe spatial derivative in direction d. Using the Euler equations,
the temporal derivative can be replacedby spatial derivativesyielding

" #
= h t t t
Un+1-2: Un+ o _Vn Un _Vn Un —r n;
d 2 2 d @ 2 ?d@d 2 p

where ? d is the direction perpendicular to d in 2D (in 3D the sum over the two
perpendicular directions) and vy is the velocity componert in direction d at the certre
of the cell. Given a cell face,two valuesof U 2” ~ canbe constructed,onefor ead cell
sharing this face. In the original Godunov method for compressible uids an unique
value is constructed from these two values by solving a Riemann problem. In the
incompressiblecase,simple upwinding is su cien t [5].

Following [21,22]we usea simpli ed upwind sdhemeof the form

- h . I
U =2(Q) = U+ S min 1 VQFtil @u” %ng@dU” (19)

where @ 4U" is the upwinded derivative in direction ? d
8
21 ,qU" ifVl <O

> n i N
“rgqU" ifviy>0

@qU" = (20)

r »4 is computedasin section4.1 and ¢ d is the direction opposite to ? d. The cell-
certred derivative @QU" is computedby tting a parabolathrough the certre of Cand
of its neighbours in directions d and &. If the neighbours are on di erent levels, an
interpolation or averagingproceduresimilar to that presened in section4.1is used.In

the caseof neighbouring cellsat the samelevel, this procedurereducesto the classical
second-orderccuratecertred di erence scheme.We alsodo not useany slope limiters

on the derivatives as we do not expect strong discortinuities in the velocity eld for

incompressible o ws. Slope limiters can easily be addedin this schemeif necessary

Giventhe time- and face-cetred valuesU 3” =2(C) andU E;l =2(N 4) we then choosethe
upwind state

8
% Ug’flzz(c) ifug >0
unt2(Q) = U£)+1:2(Nd) - E Ug)*l:Z(Nd) if ul < 0 (21)
5UEP(O+ U (Ng) ifuj=0

where N4 is the neighbour of C in direction d. If Ny is at a lower level (gure 20)
and ug 0, the value upwinded from Ny at the certre of the face (marked by )

21



Fig. 20. Upwinding in the caseof neighbouring cells at di erent levels. Linear interpolation
is usedto derive the value on the right side of .

is interpolated linearly from UE;“Z(N(,) and from the value for its neighbour (or its
children) in the correct direction, UE)”:Z(N?(,).

In orderto computethe advection term using (18), we rst needto construct the face-
and time-certred normal velocities u)** . If we want the method to be conserative,
these normal velocities have to be discretely divergence-freeln a rst step, normal
velocities are constructedfor both sidesof ead cell faceusing (19) and (20) wherev{
and v; 4 are the correspnding componerts of the certred velocity U". The upwind
state uj is then selectedfor eat faceusing (21) whereu] is obtained by linear inter-
polation of the relevant componert of the certred velocities U"(C) and U"(Ng). To
make this set of normal velocities divergence-freave then apply a projection step by

solving
L()=r u? (22)

wherer u? is the nite-v olume divergenceof the normal velocity eld, expressedor
ead cell as

? 1 ?
= — i 23
ru ah Sauy (23)

By correctingu” with the pressuresolution, we obtain a set of face-and time-certred
normal velocities

it = ul g (24)

d =
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When correcting the normal velocities, we also calculate a cell-cerred value for the
pressuregradiert by simple averagingof facegradierts

r;’:ird 4 . (25)

=

To compute the advection term A”*l_zz, we rst needto re-predict the face-cetred
velocities U™ 7, this time using u§ ™ 7 rather than averagesfrom cell-certred values.
Again, in a rst step, normal velocities are constructedfor both sidesof ead cell face

using (19) and (20) where we now take vy = (u3+1 = ugfl =2):2. A unique value

U7 is then selectedfor eat face using (21). A face-cetred pressuregradiert Fois
then computedby linear interpolation from the averagecell-cenred valuesr ? (C) and
r ? (Ng) (or its children). The predicted value is then obtained as

ugt@=ul t
Note that we could re-usethe face-and time-certred normal velocities u}*™ ™ as pre-
dicted values(the tangertial componert would still needto be recalculated),howewer,
we have found this approad to be unstablefor ow around sharp angles.The spatial
Itering of the pressuregradiert provided by the averaging procedure seemsto be
necessaryto ensurestability in this particular case.

5.1 Smal-cell problem

To obtain the provisional cell-cerred velocity eld U?? using (1), it is necessaryto
divide the nite volume advection term (18) by the volume of the cell (ah?) to get
A"*1=2 This leadsto the classicalCFL stability condition

kUk t
ah

which expresseshe condition that a cell shouldnot \over ow" during a giventimestep.
In the generalcase,the uid fraction a can be arbitrarily small with a correspnding
restrictive condition on the maximum timestep. This is traditionally referredto asthe
\small-cell problem". A number of approatesexist to work around this problem: cell
merging [37,14],redistribution [15] or special di erence sdhemes[13]. We have chosen
to use a simple cell-merging technique similar to that presened by Quirk [14]. At
initialisation time, after the volume and areafractions have beencomputed, all small
cells are assigneda pointer to their biggest neighbour B (as measuredby the uid
fraction a). For a given timestep, the advection term ah?A"*1=2 is then computedin
all cells as descrilked above. To compute the advection update to the velocity, small
cellsare rst grouped with adjacert mixed or full cells using the following recursive
algorithm:

1
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Group (G, ©
if Cdoesnot already belongto any group then
Add Cto G
if Cis asmallcell then
Group (G, B(O)
end if
for ead direction d
if Ng is a small cell then
Group (G, Ny)
end if
end for
end if

where G is the resulting group of cells. For eat group, the weighted averagedupdate

is computed as P
G ahZA n+1=2

cah?z ~

Ead cellin the group then receivesa fraction of the update proportional to its volume

n+l=2 _
Ag =

AN+L=2 PﬂAnﬂzz_
cah2 ¢
This is equivalent to usinga \virtual" cellformedby all the cellsin the group. The CFL
stability now dependson the total volume of the group of cells.In practice, choosing
to de ne small cells as cells for which a < 1=2 ensuredstability in all the caseswe
tested.

6 Appro ximate pro jection

While it is easyto formulate an exact projection operator for MAC (staggered,face-
based)discretisation of the velocity eld, it isdicult to dothe samefor a cell-cerred
discretisation. This is due to the spatial decouplingof the stencilsusedfor the relax-
ation operator. This can causenumerical instabilities in the pressure eld and makes
e cient implemenrtation of multigrid techniquesdicult [38,9]. Attempts to couple
neighbouring pressurecellsthrough asymmetric operators have beenunsuccessful39].

Drawing from these conclusions,Almgren, Bell and Szymczak[12] dropped the re-
quiremert of exact discrete non-divergenceof the projected cell-cerired velocity eld
and proposedto usean approximate Laplacian operator well-behared with respect to
spatial coupling. Following Lai [38], Minion [11]and Martin [21]we usean appraximate
projection basedon face-cetred interpolation of the cell-cerired velocity eld. In a
rst step, face-cetred normal componerts of the velocity are constructed by interpo-
lation of the cell-cenred provisional velocity U ??. This normal (MA C) velocity eld is
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then projected using the exact projection operator (following steps(22) to (24)) and

averagecell-cerired pressuregradierts are constructed (using (25)). These pressure
gradierts are then usedto correct U?? to obtain the approximately divergence-free
velocity eld UM,

A detailed study of the stability of the appraximate projection canbe found in [40,41].
The use of pressure lters was found to be necessaryin some cases(long, quasi-
stationary simulations) to avoid a gradual build-up of non-divergence-freevelocity
modes. We do not use pressure Iters in the current version of the code but did not
encourter any noticeablenumerical instabilities for the various tests we performed.

It is also important to note that ewven if the resulting cell-cerred velocity eld is
not exactly divergence-freethe face-cetred normal advection eld uQ” ~ is exactly
discretely divergence-freeso that the advection sthemeis exactly consenrative. This

is particularly important for the treatment of variable density ows.

7 Adaptiv e mesh re nemen t

Using a tree-baseddiscretisation, it is relatively simple to implemert a fully exible
adaptive re nement strategy.

In a rst step, all the leaf cells which satisfy a given criterion are re ned (as well as
their neighbourswhennecessaryin order to respect the constraints descrikedin gure
2). This step could be repeated recursiwely but we generally assumethat the ow is
ewlving slovly (comparedto the frequency of adaptation) so that only one passis
necessary

In a secondstep, we considerthe parert cellsof all the leaf cells (i.e. the immediately
coarserdiscretisation). All of thesecellswhich do not satisfy the re nement criterion
are coarsenedi.e. becomeleaf cells).

The valuesof the cell-certred variablesfor newly created or coarsenedcells must be
initialised. For newly coarsenedells, it is consistert to computethesevaluesasthe vol-
ume weighted averageof the valuesof their (defunct) children, sothat quantities sut
asmomertum are presened exactly. For newly createdcells, the solution is lessobvi-
ous. In particular, it is desirablethat momerium and vorticity are locally presened.
Unfortunately, this is not simpleto achieve in practice. We have chosena simplelinear
interpolation procedureusing the parert cell value and its gradierts. Given a newly
createdcell C with parert cell P, the new cell-cerred value v(C) is obtained as

V(Q = v(P)+ xrxVv(P)+ yryVv(P);

where( ; ) arethe coordinatesof the certre of Crelative to the certre of P. This
formula guararteeslocal conseration of momertum but tendsto introduce numerical
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noisein the vorticity eld. A better choice may be higher-orderinterpolants sud as
bicubic interpolation.

On the new discretisation, there is no guarartee that the velocity eld is divergence-
freeanymore. A projection stepis then needed.To avoid the costof an extra projection
stepwhenadapting the grid, we performthe grid re nement at the fractional timestep,
using the provisional velocity eld U??, just beforethe appraximate projection is ap-
plied.

Various choicesare possiblefor the re nement criterion. An attractiv e option would be
to useRichardsonextrapolation to obtain a numericalapproximation of the truncation
error of the whole scheme[42,21].For the momen, we usea simple criterion basedon
the norm of the local vorticity vector. Speci cally, a cell is re ned whene\er

hkr Uk >
maxkU k '

wheremaxkU Kk is evaluated over the ertire domain. The threshold value canbe in-
terpreted asthe maximum acceptableangular deviation (causedby the local vorticit y)
of a particle travelling at speedmaxkU k acrossthe cell.

The computational cost of this algorithm is small comparedto the cost of the Poisson
solver. It can be applied at every timestep with a negligible overall penalty (lessthan
5% of the total cost).

8 Numerical results

Following Minion [11] and Almgren et al. [43], we preser two corvergencetests illus-
trating the second-orderaccuracyof our method for ows without solid boundaries.
The rst problem usesa squareunit domain with periodic boundary conditions in
both directions. The initial conditions are taken as

uix;y)=1 2coq2 x)sin(2 y);
v(X;y) = 1+ 2sin(2 x)cog2 vy):

The exact solution of the Euler equationsfor theseinitial conditions is
ux;y;t)=1 2coq2 (x t))sin2 (y t));

v(x;y;t)=1+ 2sin(2 (x t))cos(2 (y t));
p(x;y;t)= cog4 (x t)) cod4d (y t)):

As in [43] nine runs are performedon grids with L = 5;6 and 7 levels of re nement
(labelled \uniform™) and with one (labelledr = 1) or two (labelledr = 2) additional
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Patch Lo
L = 02 L= Oz L =

r=1 | 6.80e-3| 2.19| 1.49e-3| 2.05 | 3.61e-4
r=2 |49l1e-3| 1.66| 1.55e-3| 1.81 | 4.39%e-4

L = 02 L= 02 L =
Uniform | 7.70e-3| 2.87 | 1.05e-3| 2.65 | 1.67e-4

r=1 |952e-3| 2.39| 1.81e-3| 2.17 | 4.01e-4
r=2 |1.22e-2| 2.19| 2.67e-3| 2.09 | 6.29e-4

Patch L1
L = Oq L= O1 L =

r=1 1.73e-2| 1.82| 4.89e-3| 1.91 | 1.30e-3
r=2 1.58e-2| 1.41| 5.96e-3| 1.84 | 1.66e-3

Domain L1

L=5|0; | L=6 |0y |L=7
Uniform | 1.74e-2| 2.62 | 2.84e-3| 2.68 | 4.44e-4
r=1 |227e2|214|5.15e-3| 1.93 | 1.35e-3

r=2 | 276e-2| 221 | 5.96e-3| 1.84 | 1.66e-3

Table 1
Errors and corvergenceorders in the x-componert of the velocity for a simple periodic
problem.

levels added only within the squarede ned by the points ( 0:25; 0:25) and (0;0).
The length of the run for eat caseis 0.5, the CFL number is 0.75. For ead run both
the L, and L; norms of the error in the x-componert of the velocity is computed
using (12) for both the whole domain (labelled\domain") and the re ned regiononly
(labelled \patch"). Table 1 givesthe errors and order of corvergenceobtained.

Closeto second-orderconvergenceis obtained (asymptotically in L) for the L, and
L: normson both uniform and re ned domains.The valuesobtained are comparable
to that in [11,43]. The error in the re ned patch is comparableto the error at the
resolution of the basegrid. This is expected, given the arbitrary placemen of the
re ned patch, the error is controlled mainly by the surrounding coarsecells.

The secondtest is the four-way vortex merging problem of Almgren et al. [43]. It
demonstratesthe convergenceof the method whenre nement is placedappropriately.

Four vorticesare placedin the unit-square,certred at (0; 0), (0:09,0), ( 0:045 O:O45p 3)
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and ( 0:045 O:O4§O 3) and of strengths 150,50, 50, 50 respectively. The pro le of
ead vortex certred around (X;;V;) Is

1+ tanh(100(G03 r;))
2 )

q
wherer; = (x x)?2+ (y V)2 Toinitialise the velocity eld, we usethis vorticity
asthe sourceterm in the Poissonequation for the streamfunction

r¢2 =kr Uk

Each componert of the velocity eld is then calculated from the streamfunction. No-
o w boundary conditions are usedon the four sidesof the domain and the simulations
areranto t = 0:25usinga CFL of 0.9.

Five di erent discretisationsare used, ead time with up to L levels of re nement: a

uniform grid, agrid usingstatic re nement in concertric circlesof decreasingadiusand

the dynamicadaptivere nement describedin section7. The \circle" grid is constructed

by starting from a uniform grid with four levels of re nement and by successigly

adding one level to all the cells cortained within circles certred on the origin and of

radii:
L = 6:0.25,0.15

L = 7:0.25,0.2,0.15

L = 8:0.25,0.2,0.175,0.15

L = 9:0.25,0.2,0.175,0.1625,0.15

L = 10:0.25,0.225,0.2,0.175,0.1625,0.15

For the dynamically re ned grid, the vorticit y-based criterion is applied at ewvery
timestep with a threshold = 4 10 3. As we do not have an analytical solution
for this problem, Richardsonextrapolation is used.

Figure 21 illustrates the ewolution of the vorticity and of the adaptively re ned grid for
L = 8. The mostre ned level closelyfollows the three outer vortices asthey orbit the
certral one.Far from the vortices, a very coarsemeshis used(l = 3). One may note a
fewisolatedpatchesof re nement scatteredat the periphery of the outer vortices. They
are due to the numerical noiseaddedto the vorticity by the interpolation procedure
necessaryto Il in velocity valuesfor newly created cells. As mertioned in section
7, this could be improved by using higher-orderinterpolants. This numerical noiseis
small enoughthat it doesnot compromisethe corvergenceproperties of the adaptive
method (as showvn below).

Table 2 summarisesthe results obtained for the rst twelve calculations. For ne
enough grids closeto second-ordercorvergenceis obtained for both norms and for
the three discretisations used. The norms of the error on the various grids are also
comparablefor a given resolution.

Table 3 givesthe CPU time and the size of the problems solved for all three grids
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Domain Lo

L = (O] L = O, L = 02 L =
Uniform | 2.61e-2| 1.31| 1.05e-2| 1.97 | 2.68e-3| 2.11 | 6.19e-4
Circle | 2.61e-2| 1.33| 1.04e-2| 1.96 | 2.68e-3| 1.98 | 6.81e-4
Adaptive | 2.66e-2| 1.35| 1.04e-2| 2.07 | 2.47e-3| 2.05 | 5.96e-4

Domain L1
L=6 |0 | L=7]0; | L=8]01 | L=9
Uniform | 4.46e-1| 1.25| 1.87e-1| 1.95| 4.84e-2| 1.85| 1.34e-2
Circle | 4.49e-1| 1.27 | 1.86e-1| 1.94 | 4.85e-2| 1.87 | 1.33e-2
Adaptive | 4.45e-1| 1.26 | 1.86e-1| 1.94 | 4.86e-2| 1.83 | 1.37e-2

Table 2
Errors and convergenceorders in the x-componernt of the velocity for the four-way vortex
merging problem.

CPU Time Cells advanced
Total (s) | s/cell Number
Uniform L =8 1486 167 8,912,896
Circle L=28 166 222 746,368
Adaptive L =8 117 286 409,632

Uniform L=9 13,034 166 78,643,200
Circle L=29 1024 183 5,608,960
Adaptive L =9 764 326 2,342,200

Table 3
Timings for uniform, circle and adaptive grids for the four-way vortex merging problem.

and for two levels of re nement. A PC-compatible Pertium 350 MHz macdhine was
used.The total number of leaf cellsadvancedfor the whole calculation is given aswell
as the correspnding averagespeed.For L = 8, a speedupof about nine is obtained
when using the statically re ned \circle” grid, and thirteen when using the adaptive
technique. Both the \circle" and adaptive discretisationsare notably slower (per cell)
than the uniform discretisation. This is mainly due to the interpolations necessaryto
computethe pressuregradiernt at coarse/ ne cell boundarieswhen solving the Poisson
equation( gure 4). It is alsointerestingto note that the CPU times obtained are very
closeto thosereported by Almgren et al. [43] for the sameproblem (keepingin mind
that they useda Cartesian AMR technique on a DEC Alpha computer and solved a
viscous o w).

To demonstrate the corvergenceproperties of the method in the presenceof solid
boundaries,we usea test caseinitially presened by Almgren et al. [15]. A diverging
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Fig. 21. Contour plots of vorticity (left) and adaptive grids used (right) for the four-way
vortex merging calculation. The lines on the pictures in the right column represen the
boundariesbetweenlevels of re nement (with a maximum of L = 8 levels).

channelis constructedin a4 1 domainby restricting the uid o w through the curves
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All cells Full level 5 cells
5{6 Rate 6{7 5{6 Rate 6{7
L, | 2.66e-4| 1.81 | 7.60e-5| 2.41e-4| 1.85 | 6.69e-5
L, | 5.83e-4| 1.44 | 2.15e-4| 5.36e-4| 1.49 | 1.91e-4
L, | 5.05e-3| 0.89 | 2.72e-3|| 3.77e-3| 0.93 | 1.98e-3

Table 4
Errors and corvergencerates for the x-componert of the velocity.
All cells Full level 5 cells
5{6 Rate 6{7 5{6 Rate 6{7

Ly | 2.75e-4| 1.95 | 7.11e-5|| 2.31e-4| 2.16 | 5.17e-5
Lo | 7.09e-4| 1.32 | 2.84e-4| 6.76e-4| 1.59 | 2.25e-4
Ly | 7.47e-3] 1.05 | 3.60e-3|| 5.98e-3| 1.07 | 2.85e-3

Table 5
Errors and corvergencerates for the y-componert of the velocity.

Ytop and Yoot s de ned as

8
Z v 0 x 1
Ybot = E y2+ 05(y1  y2)(1+ cosG(x 1)) if1<x<3
Y2 f3 x 4
and
Yiop = 1 Ybot;

with y; = 0:2 and y, = 10 . Neumannboundary conditions for the pressureare set
at the inlet (x = 0) and at the solid boundaries.A xed unity in o w velocity is set
at the inlet and simple out o w boundary conditions at the outlet (the pressureand
the gradierts of all the componerts of the velocity are setto zeroat x = 4). The
simulations areran to t = 1 using a CFL of 0.8. Three simulations are performed
on uniform grids with L = 5;6 and 7 levels of re nement. Table 4 and 5 show the
errors and corvergencerates obtained. As in [15] we calculate errors both on the
full domain (\AIl cells”) and on the part of the domain covered by cells at level 5
ertirely cortained within the uid (\F ull level 5 cells"). Columns labelled \5{6" give
the error computed on the meshwith 5 levels of re nement using the meshwith 6
levels of re nement as reference(and similarly for columnslabelled \6{7"). For both
componerts of the velocity closeto rst-order cornvergencds obtainedfor the L; norm
and closeto second-orderconvergencefor the L; norm, as expected from a solution
globally second-orderaccurate but rst-order accurate at the boundaries. Figure 22
con rms that the error is concertrated near solid boundaries.The maximum error in
either componert is small (lessthan one percen of the magnitude of the velocity).

Finally, we presern an application of the three-dimensionalversion of the code to a
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Fig. 22. Contour plot of the error on the x-componert of the velocity estimated for a solution
with L = 6 levels of re nement.

practical engineering-ype problem. The air ow aroundthe vesseRV Tangaroaof the
National Institute of Water and Atmospheric Researb hasbeensimulated by solving
the 3D time-dependert incompressibleEuler equationsaround a CAD model. Figure
23 is a snapshotin time of the deweloped turbulent ow. Wind is coming at a right
angle from the right of the vessel.The stream ribbons and cross-sectiorat sealevel
are colouredaccordingto the norm of the velocity. The spatial resolution is about 50
certimetres near the ship and is adapted dynamically (using the vorticity criterion)
down to a minimum scaleof one meter elsewherein the ow. The resulting meshis
composedof about 350,000leaf cellsin establishedregime. Figure 24 shaws a vertical
and horizontal cross-sectiorthrough the adapted octree meshfor the sametimestep.
We arein the processof comparingtheseresultsto experimertal measuremets, which
will be the subject of a future publication.

9 Conclusion

The conbination of a quad/octree discretisation, an approximate projection method,
a multigrid Poissonsolver and a volume-of- uid embeddeddescription of solid bound-
aries provesto be a feasibleand e cien t technique for the numerical solution of the
time-dependert incompressibleEuler equations. This approad di ers from the clas-
sical Cartesian AMR technique [7,12,9]by treating the connectionbetweenlevels of
re nement at the cell operator level rather than through boundary conditions between
re ned patches.Theseoperators canbe designedio be spatially second-orderccurate
and to useconsistem (consenative) ux estimationsat coarse/ ne boundaries. This
ne-grained description allows almost full exibilit y in the placemen and shape of
re ned regions. Moreover, the re nement and coarseningprocessis naturally imple-
mented by the quad/octree structure and doesnot needspecialisedalgorithms for grid
generation[44]. The meshadaptation can thus be performedfor every timestep with
minimum overhead.

The price to pay for this exibilit y is the lossof the array-based,cade- and access-
e cien t structured grids which are at the coreof the CartesianAMR technique. While
more thorough investigation would be necessarywe show that similar performances
to AMR can be achieved using our quad/octree approad. Moreover, we beliewe that
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in the caseof small and complicated structures (such as interfacesbetween uids or
shacks) the exibilit y of this approad can more than compensatefor this overhead
(giventhat a CartesianAMR techniquewould requirea largenumber of re ned patches
to cover the small structures, leadingto substartial overheadsin boundary conditions
and most probably to the lossof cade-e ciency).

Future dewelopmerts include extensionto the incompressiblevariable-densiy Navier{
Stokes equations and interfacial ows, using VOF [45] and marker techniques [46].
Using sub-cyclingin time on di erent levels of re nement [43] would also be a useful
extensionof the algorithm preserted.

Finally, by providing an open sourceversion of the code which can be freely redis-
tributed and modi ed [25], we hope to encourageresearti and collaboration in this
eld.
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Fig. 23. Air o w around RV Tangaroa. The stream ribb ons and cross-sectionat sealevel are
coloured accordingto the norm of the velocity.

Fig. 24. Adaptive mesh. The horizontal and vertical cross-sections illustrate the
three-dimensional adaptive octree.
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